Hide/Show Apps

Surface micromachined capacitive accelerometers using mems technology

Download
2003
Yazıcıoğlu, Refet Fırat
Micromachined accelerometers have found large attention in recent years due to their low-cost and small size. There are extensive studies with different approaches to implement accelerometers with increased performance for a number of military and industrial applications, such as guidance control of missiles, active suspension control in automobiles, and various consumer electronics devices. This thesis reports the development of various capacitive micromachined accelerometers and various integrated CMOS readout circuits that can be hybrid-connected to accelerometers to implement low-cost accelerometer systems. Various micromachined accelerometer prototypes are designed and optimized with the finite element (FEM) simulation program, COVENTORWARE, considering a simple 3-mask surface micromachining process, where electroplated nickel is used as the structural layer. There are 8 different accelerometer prototypes with a total of 65 different structures that are fabricated and tested. These accelerometer structures occupy areas ranging from 0.2 mm2 to 0.9 mm2 and provide sensitivities in the range of 1-69 fF/g. Various capacitive readout circuits for micromachined accelerometers are designed and fabricated using the AMS 0.8 æm n-well CMOS process, including a single-ended and a fully-differential switched-capacitor readout circuits that can operate in both open-loop and close-loop. Using the same process, a buffer circuit with 2.26fF input capacitance is also implemented to be used with micromachined gyroscopes. A single-ended readout circuit is hybrid connected to a fabricated accelerometer to implement an open-loop accelerometer system, which occupies an area less than 1 cm2 and weighs less than 5 gr. The system operation is verified with various tests, which show that the system has a voltage sensitivity of 15.7 mV/g, a nonlinearity of 0.29 %, a noise floor of 487 Hz