Hide/Show Apps

A methodology for detection and evaluation of lineaments from satellite imagery

Koçal, Arman
The discontinuities play an important role both in design and development stages of many geotechnical engineering projects. Because of that considerable time and capital should be spent to determine discontinuity sets by conventional methods. This thesis present the results of the studies associated with the application of the Remote Sensing (RS) and the development of a methodology in accurately and automatically detecting the discontinuity sets. For detection of the discontinuities, automatic lineament analysis is performed by using high resolution satellite imagery for identification of rock discontinuities. The study area is selected as an Andesite quarry area in Gölbasi, Ankara, Turkey. For the high resolution data 8-bit Ikonos Precision Plus with 1 meter resolution orthorectified image is used. The automatic lineament extraction process is carried out with LINE module of PCI Geomatica v8.2. In order to determine the most accurate parameters of LINE, an accuracy assessment is carried out. To be the reference of the output, manual lineament extraction with directional filtering in four principal directions (N-S, E-W, NE-SW, NW-SE) is found to be the most suitable method. For the comparison of automatic lineament extraction and manual lineament extraction processes, LINECOMP program is coded in java environment. With the written code, a location and length based accuracy assessment is carried out. After the accuracy assesssment, final parameters of automatically extracted lineaments for rock discontinuity mapping for the study area are determined. Besides these, field studies carried out in the study area are also taken into consideration.