Hide/Show Apps

Data mining for rule discovery in relatonal databases

Toprak, Serkan
Data is mostly stored in relational databases today. However, most data mining algorithms are not capable of working on data stored in relational databases directly. Instead they require a preprocessing step for transforming relational data into algorithm specified form. Moreover, several data mining algorithms provide solutions for single relations only. Therefore, valuable hidden knowledge involving multiple relations remains undiscovered. In this thesis, an implementation is developed for discovering multi-relational association rules in relational databases. The implementation is based on a framework providing a representation of patterns in relational databases, refinement methods of patterns, and primitives for obtaining necessary record counts from database to calculate measures for patterns. The framework exploits meta-data of relational databases for pruning search space of patterns. The implementation extends the framework by employing Apriori algorithm for further pruning the search space and discovering relational recursive patterns. Apriori algorithm is used for finding large itemsets of tables, which are used to refine patterns. Apriori algorithm is modified by changing support calculation method for itemsets. A method for determining recursive relations is described and a solution is provided for handling recursive patterns using aliases. Additionally, continuous attributes of tables are discretized utilizing equal-depth partitioning. The implementation is tested with gene localization prediction task of KDD Cup 2001 and results are compared to those of the winner approach.