Computer simulation of grain boundary grooving and cathode voiding n bamboo interconnects by surface diffusion under capillary and electromigration forces

Akyıldız, Öncü
The processes of grain boundary grooving and cathode voiding which are important in determining the life times of thin films connecting the transistors in an integrated circuit are investigated by introducing a new mathematical model, which flows from the fundamental postulates of irreversible thermodynamics, accounting for the effects of applied electric field and thermal stresses. The extensive computer studies on the triple junction displacement dynamics shows that it obeys the first order reaction kinetics at the transient stage, which is followed by the familiar time law as , in the normalized time and space domain, at the steady state regime in the absence of the electric field (EF). The application of EF doesn̕t modify this time law very; but puts only an abrupt upper limit for the groove depth and fixes the total elapse time for that event, which is found to be inversely proportional with the electron wind intensity parameter. The drift in the cathode edge due to the surface diffusion along the side walls is simulated under the constant current regime. An analytical formula is obtained in terms of system parameters, which shows well defined threshold level for the onset of electromigration induced cathode drift, showing an excellent agreement with the reported experimental values in the literature.


An experimental study on off-design performance and noise in small pumps
Şahin, Fatma Ceyhun; Eralp, O. Cahit; Department of Mechanical Engineering (2007)
This thesis study is focused on experimentally investigating pump noise at design and off-design operations and its relations with pressure fluctuations. Small size pumps are placed in a semi-anechoic chamber and operated at various system conditions and various rotational pump speeds. Pump operational data, noise data and time dependent pressure data are recorded. Fast Fourier Transform spectra of noise and pressure data are compared. Coherence spectrum between sound pressure level and hydraulic pressures ...
Cepstral deconvolution method for measurement of absorption and scattering coefficients of materials
Aslan, Gökhan; Çalışkan, Mehmet; Department of Mechanical Engineering (2006)
Several methods are developed to measure absorption and scattering coefficients of materials. In this study, a new method based on cepstral deconvolution technique is proposed. A reverberation room method standardized recently by ISO (ISO 17497-1) is taken as the reference for measurements. Several measurements were conducted in a physically scaled reverberation room and results are evaluated according to these two methods, namely, the method given in the standard and cepstral deconvolution method. Two meth...
Computational Modeling of the Effects of Viscous Dissipation on Polymer Melt Flow Behavior During Injection Molding Process in Plane Channels
Tutar, M.; Karakuş, Ali (2013-02-01)
The present finite volume method based fluid flow solutions investigate the boundary-layer flow and heat transfer characteristics of polymer melt flow in a rectangular plane channel in the presence of the effect of viscous dissipation and heat transfer by considering the viscosity and density variations in the flow. For different inflow velocity boundary conditions and the injection polymer melt temperatures, the viscous dissipation effects on the velocity and temperature distributions are studied extensive...
Computer Solutions of Plane Strain Axisymmetric Thermomechanical Problems
Eraslan, Ahmet Nedim (2005-08-01)
A simple computational model is developed to estimate elastic, elastic-plastic, fully plastic, and residual stress states in generalized plane strain axisymmetric structures considering temperature dependent physical properties as well as nonlinear isotropic strain hardening. Using the von Mises yield criterion, total deformation theory and a Swift-type nonlinear hardening law, a single nonlinear differential equation governing thermoelastoplastic behavior is obtained. A shooting technique using Newton iter...
Modeling of environmental temperature dependency for sensors operated by sagnac effect
Alaçakır, Ece; Çakır, Serhat; Department of Physics (2019)
In this thesis, the purpose is that theoretical, experimental and simulation environment are combined to observe and model the thermal sensitivity of a gyroscope which is operated by the principle of Sagnac effect. It is essential to enhance the knowledge and experience, and to gain ability to simulate for different thermal conditions for future developments of the advanced gyroscope technologies. This thesis investigates how external temperature change influences the performance of fiber optic gyroscopes, ...
Citation Formats
Ö. Akyıldız, “Computer simulation of grain boundary grooving and cathode voiding n bamboo interconnects by surface diffusion under capillary and electromigration forces,” M.S. - Master of Science, Middle East Technical University, 2004.