Hide/Show Apps

Synthesis and characterization of waterborne silane coupling agent containing silicone-acrylic resin

Akın, Özlem
In this study, waterborne silicone-acrylic resin was produced by incorporating silane coupling agent onto the acrylic main chain by emulsion polymerization. After applying different emulsion polymerization processes, batch polymerization was selected to obtain the resultant resin. Thus finding the optimum conditions by investigating the parameters of monomer ratios, initiators, concentrations of initiators, temperature and time, the novel resin was synthesized. Water-dispersed silicone-acrylic resin was produced using butyl acrylate, butyl methacrylate, methyl methacrylate, 3-methacryloxypropyltrimethoxysilane and acrylic acid as a hydrophilic monomer. 2,2'-azobis[2-(2-imidazolin-2yl)propane]dihydrogen chloride as thermal initiator and t-butyl hydroperoxide / sodiummetabisulfite as redox couple initiator were selected as the best effective initiators for the production of silicone-acrylic resin. The reaction temperature of the preparation of silicone-acrylic resin was taken as 50?C maximum to prevent gelation and agglomeration. To understand the effect of silane coupling agent on the properties of the resin, a new resin was synthesized which did not contain any silane coupling agent and the properties of both resins were determined by FTIR spectroscopy, thermal analysis and mechanical tests. Their physical properties were also determined. The addition of 3-methacryloxypropyltrimethoxysilane to the main chain increased the hardness and the gloss values but slightly decreased the abrasion resistance value of the silicone-acrylic resin. All the samples showed superior flexibility. The produced polymer which contains silane coupling agent showed excellent adhesion properties on glass and metal plates.