Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Lifting fibrations on algebraic surfaces to characteristic zero
Download
index.pdf
Date
2005
Author
Kaya, Celalettin
Metadata
Show full item record
Item Usage Stats
74
views
26
downloads
Cite This
In this thesis, we study the problem of lifting fibrations on surfaces in characteristic p, to characteristic zero. We restrict ourselves mainly to the case of natural fibrations on surfaces with Kodaira dimension -1 or 0. We determine whether such a fibration lifts to characteristic zero. Then, we try to find the smallest ring over which a lifting is possible. Finally,in some favourable cases, we compare the moduli of liftings of the fibration to the moduli of liftings of the surface under consideration.
Subject Keywords
Algebraic geometry.
URI
http://etd.lib.metu.edu.tr/upload/12605861/index.pdf
https://hdl.handle.net/11511/14828
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The moduli of surfaces admitting genus two fibrations over elliptic curves
Karadoğan, Gülay; Önsiper, Mustafa Hurşit; Department of Mathematics (2005)
In this thesis, we study the structure, deformations and the moduli spaces of complex projective surfaces admitting genus two fibrations over elliptic curves. We observe that, a surface admitting a smooth fibration as above is elliptic and we employ results on the moduli of polarized elliptic surfaces, to construct moduli spaces of these smooth fibrations. In the case of nonsmooth fibrations, we relate the moduli spaces to the Hurwitz schemes H(1,X(d),n) of morphisms of degree n from elliptic curves to the ...
Hilbert functions of gorenstein monomial curves
Topaloğlu Mete, Pınar; Arslan, Sefa Feza; Department of Mathematics (2005)
The aim of this thesis is to study the Hilbert function of a one-dimensional Gorenstein local ring of embedding dimension four in the case of monomial curves. We show that the Hilbert function is non-decreasing for some families of Gorenstein monomial curves in affine 4-space. In order to prove this result, under some arithmetic assumptions on generators of the defining ideal, we determine the minimal generators of their tangent cones by using the standard basis and check the Cohen-Macaulayness of them. Lat...
ON GENERALIZED LOCAL SYMMETRIES OF THE SO(2,1) INVARIANT NONLINEAR SIGMA-MODEL
BASKAL, S; ERIS, A; SATIR, A (1994-12-19)
The symmetries and associated conservation laws of the SO(2,1) invariant non-linear sigma model equations in 1+1 dimensions are investigated. An infinite family of generalized local symmetries is presented and the uniqueness of these solutions is discussed.
On the problem of lifting fibrations on algebraic surfaces
Kaya, Celalettin; Önsiper, Mustafa Hurşit; Department of Mathematics (2010)
In this thesis, we first summarize the known results about lifting algebraic surfaces in characteristic p > 0 to characteristic zero, and then we study lifting fibrations on these surfaces to characteristic zero. We prove that fibrations on ruled surfaces, the natural fibration on Enriques surfaces of classical type, the induced fibration on K3-surfaces covering these types of Enriques surfaces, and fibrations on certain hyperelliptic and quasi-hyperelliptic surfaces lift. We also obtain some fragmentary re...
Algebraic curves hermitian lattices and hypergeometric functions
Zeytin, Ayberk; Önsiper, Mustafa Hurşit; Department of Mathematics (2011)
The aim of this work is to study the interaction between two classical objects of mathematics: the modular group, and the absolute Galois group. The latter acts on the category of finite index subgroups of the modular group. However, it is a task out of reach do understand this action in this generality. We propose a lattice which parametrizes a certain system of ”geometric” elements in this category. This system is setwise invariant under the Galois action, and there is a hope that one can explicitly under...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kaya, “Lifting fibrations on algebraic surfaces to characteristic zero,” M.S. - Master of Science, Middle East Technical University, 2005.