Hide/Show Apps

Implementation of the Spalart-Allmaras turbulence model to a two-dimensional unstructured Navier-Stokes solver

Aybay, Orhan
An unstructured explicit, Reynolds averaged Navier-Stokes solver is developed to operate on inviscid flows, laminar flows and turbulent flows and one equation Spalart-Allmaras turbulence modeling is implemented to the solver. A finite volume formulation, which is cell-center based, is used for numerical discretization of Navier-Stokes equations in conservative form. This formulation is combined with one-step, explicit time marching upwind numerical scheme that is the first order accurate in space. Turbulent viscosity is calculated by using one equation Spalart-Allmaras turbulence transport equation. In order to increase the convergence of the solver local time stepping technique is applied. Eight test cases are used to validate the developed solver,for inviscid flows, laminar flows and turbulent flows. All flow regimes are tested on NACA-0012 airfoil. The results of NACA-0012 are compared with the numerical and experimental data.