Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling and control of a stabilization system
Download
index.pdf
Date
2004
Author
Afacan, Kamil
Metadata
Show full item record
Item Usage Stats
280
views
149
downloads
Cite This
Elevation axis model of a barrel stabilization system is constructed. The nonlinearities which are considered in the model are orifice flow characteristics, coulomb friction, hard-stop limits, kinematics of the system and unbalance on the barrel. A Simulink® model for the servo valve, actuation system and barrel is constructed. Servo valve identification is made via the actual test data. Compressibility of the hydraulic fluid is taken into consideration while modeling the actuation system. Friction model is simulated for different cases. Controller of the system is constructed by two PIDs, one for each of the velocity and the position loops. Velocity feed forward can reduce the time to make a quick move by the system. The disturbance is evaluated from a given road profile and disturbance feed forward is applied to the system.
Subject Keywords
Control Engineering Systems.
,
Automatic Machinery (General)
URI
http://etd.lib.metu.edu.tr/upload/12605576/index.pdf
https://hdl.handle.net/11511/14990
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Angular acceleration assisted stabilization of a-2 DOF gimbal platform
Öztürk, Taha; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2010)
In this thesis work construction of the angular acceleration signal of a 2-DOF gimbal platform and use of this signal for improving the stabilization performance is aimed. This topic can be divided into two subtopics, first being the construction of angular acceleration and the second being the use of this information in a way to improve system performance. Both problems should be tackled in order to get satisfactory results. The most important output of this work is defined as the demonstration of the impr...
Modeling and real-time control system implementation for a Stewart Platform
Albayrak, Onur; Arıkan, Mehmet Ali Sahir; Department of Mechanical Engineering (2005)
This work focuses on modeling and real-time control of a motion simulator for dynamic testing of a two-axis gyro-stabilized head mirror used in modern tanks. For this purpose, a six-degree-of freedom Stewart Platform which can simulate disturbances on the stabilized head mirror during operation of the tank is employed. Mathematical models of the Stewart Platform are constructed using MATLAB and ADAMS. Control system infrastructure is constructed and real-time control system elements are employed. Controller...
Modeling and simulation of a navigation system with an IMU and a Magnetometer
Kayasal, Uğur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
In this thesis, the integration of a MEMS based inertial measurement unit and a three axis solid state magnetometer are studied. It is a fact that unaided inertial navigation systems, especially low cost MEMS based navigation systems have a divergent behavior. Nowadays, many navigation systems use GPS aiding to improve the performance, but GPS may not be applicable in some cases. Also, GPS provides the position and velocity reference whereas the attitude information is extracted through estimation filters. ...
Simulation of motion of an underwater vehicle
Geridönmez, Fatih; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2007)
In this thesis, a simulation package for the Six Degrees of Freedom (6DOF) motion of an underwater vehicle is developed. Mathematical modeling of an underwater vehicle is done and the parameters needed to write such a simulation package are obtained from an existing underwater vehicle available in the literature. Basic equations of motion are developed to simulate the motion of the underwater vehicle and the parameters needed for the hydrodynamic modeling of the vehicle is obtained from the available litera...
GPS based altitude control of an unmanned air vehicle using digital terrain elevation data
Ataç, Selçuk; Platin, Bülent Emre; Department of Mechanical Engineering (2006)
In this thesis, an unmanned air vehicle (UAV) is used to develop a prototype base test platform for flight testing of new control algorithms and avionics for advanced UAV system development applications. A control system that holds the UAV at a fixed altitude above the ground is designed and flight tested. Only the longitudinal motion of the UAV is considered during the controller design, hence its lateral motions are controlled manually by a remote control unit from the ground. UAV’s altitude with respect ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Afacan, “Modeling and control of a stabilization system,” M.S. - Master of Science, Middle East Technical University, 2004.