GPS based altitude control of an unmanned air vehicle using digital terrain elevation data

Ataç, Selçuk
In this thesis, an unmanned air vehicle (UAV) is used to develop a prototype base test platform for flight testing of new control algorithms and avionics for advanced UAV system development applications. A control system that holds the UAV at a fixed altitude above the ground is designed and flight tested. Only the longitudinal motion of the UAV is considered during the controller design, hence its lateral motions are controlled manually by a remote control unit from the ground. UAV’s altitude with respect to the mean sea level and position are obtained by an onboard global positioning system (GPS) and this information is transmitted to the ground computer via radio frequency (RF) communication modules. The altitude of the UAV above the ground is calculated by using the digital terrain elevation data (DTED). A controller is designed and its gains are tuned to maintain this flight altitude at a desired value by using the mathematical model developed to represent the longitudinal dynamics of the UAV. Input signals generated by the controller for elevator deflections are transmitted back to the UAV via RF communication modules to drive onboard servomotors to generate desired elevator deflections. All controller computations and RF communications are handled by a MATLAB® based platform on a ground computer. UAV flight tests are carried out at two different autopilot modes; namely, mean sea level (MSL) altitude hold mode and above ground level (AGL) altitude hold mode. The developed platform worked properly during flight tests and proved to be reliable in almost every condition. Moreover, the designed controller system is demonstrated to be effective and it fulfills the requirements.
Citation Formats
S. Ataç, “GPS based altitude control of an unmanned air vehicle using digital terrain elevation data,” M.S. - Master of Science, Middle East Technical University, 2006.