Prolongation structures, backlund transformations and painleve analysis of nonlinear evolution equations

Download
2004
Yurduşen, İsmet
The Wahlquist-Estabrook prolongation technique and the Painleve analysis, used for testing the integrability of nonlinear evolution equations, are considered and applied both to the Drinfel'd-Sokolov system of equations, indeed known to be one of the coupled Korteweg-de Vries (KdV) systems, and Kersten-Krasil'shchik coupled KdV-mKdV equations. Some new Backlund transformations for the Drinfel'd-Sokolov system of equations are also found.
Citation Formats
İ. Yurduşen, “Prolongation structures, backlund transformations and painleve analysis of nonlinear evolution equations,” Ph.D. - Doctoral Program, Middle East Technical University, 2004.