Development of a membrane based treatment scheme for water recovery from textile effluents

Çapar, Gökşen
A membrane based treatment scheme was developed for the recovery of the print dyeing wastewaters (PDWs) and the acid dye bath wastewaters (ADBWs) of carpet manufacturing industry. The treatment schemes were developed by selecting the best pre-treatment and treatment processes among the alternatives of chemical precipitation (CP), microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). The best process train for PDW was CP+NF, where organic matter, color, turbidity and total hardness were removed at >95%. The alternative process train CP+UF also removed color and turbidity almost completely, however organic matter rejection was low, being 25% at highest. The quality of NF permeates were suitable for dyeing of light colors whereas UF permeates were suggested for washing of the printed carpets or dyeing of the dark colors. The best process train for ADBW was MF (1.0 mm)+NF, where organic matter rejection increased from 65% to 97% due to pH neutralization. Alternatively, sequential NF was required up to three stages in order to achieve similarly high rejections at the acidic pH of ADBW. Therefore, pH neutralization was realized to be a very important operational parameter affecting the treatment scheme. Although pH neutralization increased the flux declines by almost 5%, chemical cleaning was very effective to restore the original fluxes. Finally, ADBW was mixed with PDW, which already had a pH around neutral, so that the pH of ADBW would rise towards neutral without chemical consumption. The results suggested that these wastewaters could be treated together as long as they were mixed up to equal volumes at pH around neutral. Therefore, a final treatment scheme, which involved single NF for the mixture of PDW and ADBW, following their individual pre-treatment stages, was proposed as the most efficient process train.


Laboratory investigation of the treatment of chromium contaminated groundwater with iron-based permeable reactive barriers
Uyuşur, Burcu; Ünlü, Kahraman; Department of Environmental Engineering (2006)
Chromium is a common groundwater pollutant originating from industrial processes such as metal plating, leather tanning and pigment manufacturing. Permeable reactive barriers (PRBs) have proven to be viable and cost-effective systems for remediation of chromium contaminated groundwater at many sites. The purpose of this research presented in this thesis is to focus on two parameters that affect the performance of PRB on chromium removal, namely the concentration of reactive media and groundwater flux by ana...
Evaluation of laser treatment on reline-base composites
Bolayir, Giray; Turgut, Mehmet; Hubbezoglu, Ihsan; Dogan, Orhan Murat; Keskin, Selda; Dogan, Arife; Bek, Buelent (Informa UK Limited, 2007-01-01)
The effects of different laser treatments on some mechanical properties of acrylic resin and soft liner were investigated. A total of 60 test specimens were fabricated according to test requirements. The specimens were roughened with Potassium-ticanyl-Phosphate (KTP), Er:YAG, and Nd:YAG lasers before application of soft liner. The flexural, peel, and tensile bond strengths were measured using a universal testing machine. Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) sp...
Evaluation of Integrated Pollution Prevention Control in a textile fiber production and dyeing mill
Ozturk, Emrah; KARABOYACI, Mustafa; Yetiş, Ülkü; YİĞİT, Nevzat Özgü; KİTİŞ, Mehmet (Elsevier BV, 2015-02-01)
Cleaner production assessment studies were conducted in a textile mill employing wool and acrylic fiber production and subsequent dyeing. A company-wide mass-balance analysis was performed. Various specific consumptions, emissions and waste generations were determined. The performance of the mill was evaluated based on BREF Documents. Water quality analysis indicated that process wastewaters from wool yarn softening, LP-VP printing machines and acrylic yarn washing could be reused in these processes, even w...
Shape memory polymer composites containing carbon based fillers
Şengör, İrem; Bayram, Göknur; Köysüren, Özcan; Department of Chemical Engineering (2013)
The aim of this dissertation was to produce shape memory polymer nanocomposites using diglycidyl ether of bisphenol A (DGEBA) epoxy resin and isophorone diamine based cyclo-aliphatic curing agent. The polymer matrix was modified with aliphatic and aromatic monomers namely, neopentyl glycol diglycidyl ether (NGDE) and resorcinol diglycidyl ether (RDE). In the formation of composites, carbon black and carbon nanotubes were used separately and also together as hybrid filler. All samples were subjected to mecha...
Nanofiltration and Reverse Osmosis for Reuse of Indigo Dye Rinsing Waters
Uzal, Nigmet; Yılmaz, Levent; Yetiş, Ülkü (Informa UK Limited, 2010-01-01)
A membrane based treatment strategy was developed for the possible recycling of rinsing wastewater from indigo dyeing to the process itself. Performances of three different nanofiltration (NF) (NF 270 and NF 90, Dow Film Tech, USA and NF 99, Alfa Laval, Denmark) and two different reverse osmosis (RO) (HR 98 PP and CA 995 PE, Alfa Laval, Denmark) membranes were investigated with wastewater collected from the first post-rinsing tank of indigo dyeing process of a denim manufacturing plant. Dead-end microfiltra...
Citation Formats
G. Çapar, “Development of a membrane based treatment scheme for water recovery from textile effluents,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.