Investigation of the deep drawability of steel and aluminum sheets by finite element simulation

Download
2005
Sönmez, Çağlar
Sheet metal forming processes, especially deep drawing processes give diverse results by various materials. Extreme differences occur between steel sheets and aluminum sheets. The main causes of this variance are anisotropy, elastic modulus and microscopic material properties. The aim of this thesis is to evaluate the deep drawing properties and also to develop suitable process parameters for aluminum and steel sheets by finite element simulation. In the simulation, the commercial dynamic-explicit code PAM-STAMP has been used. The reliability of the finite element package was verified by a comparison with the NUMISHEET 2002 benchmarks. Additionally, a commercial part is numerically simulated for experimental verification. The results of the simulations have been compared with several experiments that were performed in Metallurgical and Materials Engineering and Mechanical Engineering Departments. Finally, the simulation results are compared with analytical expressions for verification of results. The materials investigated for the deep drawability comparison is a deep drawing quality mild steel and an aluminum alloy designated as 6111-T4. For experimental verification St4 steel is used. Results are in agreement with the fact that aluminum and steel materials behave differently upon deep drawing in terms of the onset of failure, wrinkling and final shape. Aluminum is found to be less formable than steel for cup drawing operations.

Suggestions

Comparison of the deep drawability of aluminum and steel using numerical simulation experiments
Sonmez, C; Tekkaya, AE; Gür, Cemil Hakan (2005-08-19)
Sheet metal forming processes, especially deep drawing processes give diverse results by various materials. Extreme differences occur between steel sheets and aluminum sheets. The main causes of these differences are variances in micro- and macroscopic material properties, such as anisotropy. In this study, the behavior of two distinct materials, steel and aluminum alloy, during an axisymmetrical cup drawing operation has been studied numerically. For this purpose, finite element (FE) simulations of a simpl...
3D finite element simulation of steel quenching in order to determine the microstructure and residual stresses
Şimşir, Caner; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2008)
In the course of thermal treatments, materials are usually subjected to continuous heating and cooling cycles during which microstructural evolution and mechanical interactions occur simultaneously at different length and time scales. Modeling of these processes necessitates dealing with inherent complexities such as large material property variations, complex couplings and boundary conditions, coupled heat and mass transfer mechanisms and phase transformations. In this study, a mathematical framework based...
Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models
Martin, Bryn A.; Kutluay, Umit; Yazıcıoğlu, Yiğit (ASTM International, 2013-09-01)
Characterization of the mechanical properties of human-tissue-mimicking silicone elastomers is important for producing accurate tissue models for experimentation. However, the viscoelastic and frequency-dependent material properties of elastomers are difficult to quantify. We present a material characterization technique for a silicone elastomer used to mimic human soft tissue based on generalized-Maxwell-type material models with and without fractional dissipating mechanisms. The silicone specimens were pr...
Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion
Dizaji, Shahram Abbasnejad; Darendeliler, Haluk; KAFTANOĞLU, BİLGİN (Elsevier BV, 2018-05-01)
The application of ductile fracture criteria (DFCs) in numerical analysis of sheet metal forming processes can lead to the accurate determination of the fracture initiation. In this study, a new uncoupled ductile fracture criterion (DFC) has been developed which considers the effects of material parameters on the forming limit curves (FLCs) and can be easily implemented in the finite element codes. Two different constitutive models have been employed with the new DFC in order to evaluate the results obtaine...
Three dimensional fracture analysis of FGM coatings under thermomechanical loading
Yildirim, B; Dağ, Serkan; Erdogan, E (Springer Science and Business Media LLC, 2005-04-01)
The main objective of this study is to examine the three dimensional surface crack problems in functionally graded coatings subjected to mode I mechanical or transient thermal loading. The surface cracks are assumed to have a semi-elliptical crack front profile of arbitrary aspect ratio. The cracks are embedded in the functionally graded material (FGM) coating which is perfectly bonded to a homogeneous substrate. A three dimensional finite element method is used to solve the thermal and structural problems....
Citation Formats
Ç. Sönmez, “Investigation of the deep drawability of steel and aluminum sheets by finite element simulation,” M.S. - Master of Science, Middle East Technical University, 2005.