Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulation of surface waves generated by a rapid rise of a block at the sea bottom
Download
index.pdf
Date
2005
Author
Şenol, Nalan
Metadata
Show full item record
Item Usage Stats
221
views
85
downloads
Cite This
A mathematical model is developed for investigating time dependent surface deformations of a hydrostatic water volume, when it is subjected to a sudden partial rise of the sea bottom. In the model, 2-dimensional, compressible, and viscous Navier-Stokes equations are solved by Marker and Cell (MAC) method. Variable mesh size in both horizontal and vertical directions with a staggered grid arrangement is used. Limited compressibility model is utilized for pressure. Various computational tests are done for the selection of computational parameters of the model. It is found that the amplitude of surface waves generated by vertical displacements of the sea bottom depends on size and speed of bottom displacements.
Subject Keywords
Hydraulic and Ocean Engineering.
URI
http://etd.lib.metu.edu.tr/upload/12606256/index.pdf
https://hdl.handle.net/11511/15247
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Generation of surface waves due to sudden movements at the sea bottom
Kırlangıç, Özgür Ulaş; Aydın, İsmail; Department of Civil Engineering (2004)
A mathematical model is developed for investigating time dependent surface deformations of a hydrostatic water volume, when it is subjected to a sudden partial collapse or rise of the sea bottom. The model solves two-dimensional Navier-Stokes Equations on a vertical plane numerically by using Marker and Cell Method (MAC) for viscous and compressible fluid including all the nonlinear effects in the solution. For demonstration, a vertical motion was given to a section in a hypothetical reservoir bed within a ...
Measurement and evaluation of the hydrodynamics and secondary currents in and near a strait connecting large water bodies - A field study
Gueler, Isikhan; Yueksel, Yalcin; Yalçıner, Ahmet Cevdet; Cevik, Esin; Ingerslev, Christian (Elsevier BV, 2006-09-01)
The straits connect two large water bodies show highly strong and stratified currents related to meteorological, morphological and hydrodynamic conditions. In some cases, spatial and temporal changes of the stratified currents and their thickness, direction and magnitude are so complex. This complexity directly affects the circulation pattern in the region, water exchange between both ends of the straits and migration of fish species. In order to understand general characteristics of this kind of straits an...
Forced hydraulic jump on artificially roughened beds
Şimşek, Çağdaş; Tokyay, Nuray; Department of Civil Engineering (2006)
In the scope of the study, prismatic roughness elements with different longitudinal spacing and arrangements have been tested in a rectangular flume in order to reveal their effects on fundamental characteristics of a hydraulic jump. Two basic roughness types with altering arrangements have been tested. Roughness elements of the first type extends through the channel width against the flow with varying length and pitch ratios for different arrangements. The second type is of staggered essence and produced b...
Investigation of waterhammer problems in the penstocks of small hydropower plants
Çalamak, Melih; Bozkuş, Zafer; Department of Civil Engineering (2010)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of chara...
Experimental and numerical analysis of a TLP floating offshore wind turbine
Oğuz, Elif; Day, Alexander H.; Incecik, Atilla; Amate Lopez, Juan; Sánchez, Gustavo; Gonzalez Almeria, Gonzalo (Elsevier BV, 2018-01-01)
This paper describes an experimental and numerical investigation of the Iberdrola TLP wind turbine concept, TLPWINID, in realistic wind and wave conditions. The TLP was coupled to the NREL 5 MW reference turbine and was designed to operate in a water depth of 70 m. The test campaign included free oscillation tests, tests in regular and irregular waves and simulated wind conditions.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Şenol, “Simulation of surface waves generated by a rapid rise of a block at the sea bottom,” M.S. - Master of Science, Middle East Technical University, 2005.