Investigation of drilling degrees of freedom in the finite element method

Sönmez, Hülya


Investigation of the Linear Stability Problem of Electrified Jets, Inviscid Analysis
Özgen, Serkan; Uzol, Oğuz (2012-09-01)
The instability characteristics of a liquid jet discharging from a nozzle into a stagnant gas are investigated using the linear stability theory. Starting with the equations of motion for incompressible, inviscid, axisymmetric flows in cylindrical coordinates, a dispersion relation is obtained, where the amplification factor of the disturbance is related to its wave number. The parameters of the problem are the laminar velocity profile shape parameter, surface tension, fluid densities, and electrical charge...
Investigation of decodability properties of variable-length codes under constraints
Dinçer, Nergis; Gönenç, Güney; Bilgen, Semih; Department of Electrical and Electronics Engineering (1998)
Investigation of the star tracker algorithms and kalman filter integration
Sargın Güçlü, Selva; Yavrucuk, İlkay; Department of Aerospace Engineering (2019)
This research outlines the investigation of star tracker algorithms and Kalman Filter implementation of star tracker aided INS. In the first chapter, the usage areas of the star tracker sensor was investigated. The purposes to use this sensor were also included. Furthermore, the sensor architecture and algorithms were examined. In the second chapter, the three main steps of the star tracker algorithms were investigated. First of all, literature survey about centroiding algorithms was done and two of them we...
Investigation of Stationarity for Graph Time Series Data Sets
Güneyi, Eylem Tuğçe; Vural, Elif (2021-01-07)
Graphs permit the analysis of the relationships in complex data sets effectively. Stationarity is a feature that facilitates the analysis and processing of random time signals. Since graphs have an irregular structure, the definition of classical stationarity does not apply to graphs. In this study, we study how stationarity is defined for graph random processes and examine the validity of the stationarity assumption with experiments on synthetic and real data sets.
Investigation of the deep drawability of steel and aluminum sheets by finite element simulation
Sönmez, Çağlar; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2005)
Sheet metal forming processes, especially deep drawing processes give diverse results by various materials. Extreme differences occur between steel sheets and aluminum sheets. The main causes of this variance are anisotropy, elastic modulus and microscopic material properties. The aim of this thesis is to evaluate the deep drawing properties and also to develop suitable process parameters for aluminum and steel sheets by finite element simulation. In the simulation, the commercial dynamic-explicit code PAM-...
Citation Formats
H. Sönmez, “Investigation of drilling degrees of freedom in the finite element method,” Middle East Technical University, 1997.