Contact mechanics of graded materials with two-dimensional material property variations

Download
2005
Gökay, Kemal
Ceramic layers used as protective coatings in tribological applications are known to be prone to cracking and debonding due to their brittle nature. Recent experiments with functionally graded ceramics however show that these material systems are particularly useful in enhancing the resistance of a surface to tribological damage. This improved behavior is attributed to the influence of the material property gradation on the stress distribution that develops at the contacting surfaces. The main interest in the present study is in the contact mechanics of a functionally graded surface with a two ا dimensional spatial variation in the modulus of elasticity. Poisson̕s ratio is assumed to be constant due to its insignificant effect on the contact stress distribution [30]. In the formulation of the problem it is assumed that the functionally graded surface is in frictional sliding contact with a rigid flat stamp. Using elasticity theory and semi-infinite plane approximation for the graded medium, the problem is reduced to a singular integral equation of the second kind. Integral equation is solved numerically by expanding the unknown contact stress distribution into a series of Jacobi polynomials and using suitable collocation points. The developed method is validated by providing comparisons to a closed form solution derived for homogeneous materials. Main numerical results consist of the effects of the material nonhomogeneity parameters, coefficient of friction and stamp size and location on the contact stress distribution.

Suggestions

Moisture absorption of composites with interfacial storage
Güloğlu, Görkem Eğemen; Hamidi, Youssef K.; Altan, M. Cengiz (2020-07-01)
© 2020 Elsevier LtdThermosetting polymer composites are often exposed to wet and humid environments, leading to a considerable reduction in their thermo-mechanical properties. Hence, accurate description of the moisture absorption dynamics, including anomalous effects such as molecular bonding and interfacial storage of moisture, is particularly important. In this study, the hindered diffusion model is extended to include the moisture storage at the interface of impermeable fibers or inclusions within the c...
Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers
Meyva, Y.; Kaynak, Cevdet (2015-11-01)
The purpose of this study was to improve toughness of inherently very brittle polylactide (PLA) without sacrificing strength and thermal properties, so that biopolymer PLA could be used in engineering applications. For this purpose, PLA was blended with various amounts of two different thermoplastic elastomers; TPU (petroleum-based thermoplastic polyurethane) and TPE (bio-based thermoplastic polyester). Melt blending and specimen shaping were achieved by using a twin-screw extruder and injection molder, res...
Sensitivity Analysis of Distortion of Carburized Steel Shafts Using Computer Simulations
Yazır, Büşra; Evcil, Elif; Yıldız, Seçil; Davut, Kemal; Şimşir, Caner (null; 2016-12-01)
Carburizing and subsequent quenching heat treatments are commonly used industrial processes to improve the properties and performance of steel shafts. Undesired dimensional and shape changes (distortion) related to these treatments are still the most frequent reason for expensive and time consuming corrective operations, low performance during service and even product rejection. The major aim of this study is to identify the suitable control parameters for subsequent optimization of the carburized quenching...
Compressive strength development of calcium aluminate cement-GGBFS blends
Kirca, Onder; Yaman, İsmail Özgür; Tokyay, Mustafa (2013-01-01)
The compressive strength development of calcium aluminate cement (CAC) and ground granulated blast furnace slag (GGBFS) blends that were subjected to different curing regimes are investigated. The blends had GGBFS/CAC ratios between 0% and 80%, by mass. Mortar specimens, prepared with a water:binder:sand ratio of 1:2:6, were subjected to seven different curing regimes and the compressive strengths were monitored up to 210 days. In order to understand the effect of temperature on compressive strength develop...
Wear behavior of H10A AISI/SAE steel nitrided by various methods
Yurtışık, Koray; Sarıoğlu, Filiz; Ankara, Alpay; Department of Metallurgical and Materials Engineering (2002)
Wear performance of salt-bath, vacuum, ion nitrided and duplex treated (nitrided and ceramic coated by physical vapor deposition technique) steel dies (H10A AISI/SAE) were studied. The dies were used for forging of steel pastes (52100 AISI/SAE) at 1050°C under 700 MPa for 0.3 - 0.4 seconds during production of bearing rings. The nitrided and un-nitrided dies were investigated via optical and scanning electron microscopy, x-ray diffraction and micro-hardness determination procedures. The service lives of die...
Citation Formats
K. Gökay, “Contact mechanics of graded materials with two-dimensional material property variations,” M.S. - Master of Science, Middle East Technical University, 2005.