An improved data acquisition system for contactless conductivity imaging

Download
2005
Çolak, İlyas Evrim
The previous data acquisiton system developed for the electrical impedance imaging via contactless measurements is improved to obtain measurements with a faster scanning speed of 0.15 sec/mm2. This system uses magnetic excitation to induce currents inside the body and measures the magnetic fields of the induced currents with an axial gradiometer. Gradiometer consists of two differentially connected 10000-turn coils with diameter of 30 mm and a transmitter coil of 100-turn coil of diameter 30 mm placed and magnetically coupled between them. Transmitter coil is driven by a sinusoidal current of 200 mA (peak) whose frequency is 14.1 kHz. A Data Acquisition Card (DAcC) is designed and constructed on PCB, thus elliminates the use of the Lock-In Amplifier Instrument (LIAI) in the phase sensitive measurements. User interface programs to control the scanning experiments via PC (MATLAB Scanner 1.0, HP VEE Scanner 1.0) and to analyze the acquired data (Data Observer 1.0) are prepared. System performance tests for the DAcC are made. Error in the phase sensitive measurements is measured to be 0.6% of the test signals. Minimum magnetic field density that can be detected is found to be 7 DT. Output stage performance of the DAcC is improved by using an integrator instead of an amplifier in the output stage. In this manner, maximum linearity error is measured as 6.60*10-4 % of the full scale for the integrator circuit. Thermally generated voltage drift at the sensor output is measured to be 0.5 mV/minute in the ambient temperature. Overall normalized standard deviation at the output of the data acquisition system is observed as to be in the order of 10-4. Mathematical relation between the resistive rings and conductive phantoms is studied. It is derived that maximum resistor value that can be distinguished in the resistive ring experiment which is 461 F, corresponds to the phantom

Suggestions

Modelling and noise analysis of closed-loop capacitive sigma-delta mems accelerometer
Boğa, Biter; Külah, Haluk; Department of Electrical and Electronics Engineering (2009)
This thesis presents a detailed SIMULINK model for a conventional capacitive Σ-Δ accelerometer system consisting of a MEMS accelerometer, closed-loop readout electronics, and signal processing units (e.g. decimation filters). By using this model, it is possible to estimate the performance of the full accelerometer system including individual noise components, operation range, open loop sensitivity, scale factor, etc. The developed model has been verified through test results using a capacitive MEMS accelero...
Novel impedance tuner, phase shifter, and vector modulators using rf mems technology
Ünlü, Mehmet; Demir, Şimşek; Department of Electrical and Electronics Engineering (2009)
This thesis presents the theory, design, fabrication, and measurement results of novel reconfigurable impedance tuner, phase shifter, and vector modulators using the RF MEMS technology. The presented circuits are based on triple stub topology, and it is shown both theoretically and experimentally in this thesis that it is possible to control the insertion phase and amplitude of the input signal simultaneously using this topology. The presented circuits are implemented using an in-house, surface micromachini...
Design and realization of broadband instantaneous frequency discriminator
Pamuk, Gökhan; Yıldırım, Nevzat; Department of Electrical and Electronics Engineering (2010)
n this thesis, RF sections of a multi tier instantaneous frequency measurement (IFM) receiver which can operate in 2 – 18 GHz frequency band is designed, simulated and partially realized. The designed structure uses one coarse tier, three medium tiers and one fine tier for frequency discrimination. A novel reflective phase shifting technique is developed which enables the design of very wideband phase shifters using stepped cascaded transmission lines. Compared to the classical phase shifters using coupled ...
A current source converter based statcom for reactive power compensation at low voltage
Biçer, Nazan; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2010)
This research work is devoted to the analysis, design and development of the Current-Source Converter (CSC) based distribution-type Static Synchronous Compensator (D-STATCOM) for low-voltage applications in reactive-power control in order to achieve i) faster transient response in reactive-power control, ii) lower current harmonic distortion, iii) lower power losses and iv) minimum storage elements in comparison with conventional solutions. The developed CSC-D-STATCOM includes a low-pass input filter and a ...
High performance readout and control electronics for mems gyroscopes
Şahin, Emre; Akın, Tayfun; Department of Electrical and Electronics Engineering (2009)
This thesis reports the development of various high performance readout and control electronics for implementing angular rate sensing systems using MEMS gyroscopes developed at METU. First, three systems with open loop sensing mechanisms are implemented, where each system has a different drive-mode automatic gain controlled (AGC) self-oscillation loop approach, including (i) square wave driving signal with DC off-set named as OLS_SquD, (ii) sinusoidal driving signal with DC off-set named as OLS_SineD, and i...
Citation Formats
İ. E. Çolak, “An improved data acquisition system for contactless conductivity imaging,” M.S. - Master of Science, Middle East Technical University, 2005.