Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Image segmentation with Improved region modeling
Download
index.pdf
Date
2004
Author
Ersoy, Ozan
Metadata
Show full item record
Item Usage Stats
4
views
3
downloads
Image segmentation is an important research area in digital image processing with several applications in vision-guided autonomous robotics, product quality inspection, medical diagnosis, the analysis of remotely sensed images, etc. The aim of image segmentation can be defined as partitioning an image into homogeneous regions in terms of the features of pixels extracted from the image. Image segmentation methods can be classified into four main categories: 1) clustering methods, 2) region-based methods, 3) hybrid methods, and 4) bayesian methods. In this thesis, major image segmentation methods belonging to first three categories are examined and tested on typical images. Moreover, improvements are also proposed to well-known Recursive Shortest-Spanning Tree (RSST) algorithm. The improvements aim to better model each region during merging stage. Namely, grayscale histogram, joint histogram and homogeneous texture are used for better region modeling.
Subject Keywords
Computer engineering.
URI
http://etd.lib.metu.edu.tr/upload/12605627/index.pdf
https://hdl.handle.net/11511/14650
Collections
Graduate School of Natural and Applied Sciences, Thesis