Microstructure development in nickel zinc ferrites

Download
2005
Okatan, Mahmut Barış
Nickel zinc ferrites (NZF) have been considered as one of the basic components in high frequency electromagnetic applications especially in the field of telecommunications. In the present study, the aim was to produce high quality nickel zinc ferrite ceramics at low soaking temperatures. For this purpose, conventional ceramic manufacturing method based on mixed oxide precursors was followed using calcium fluoride, CaF2, as sintering additive. During the sintering studies, it was noticed that both the microstructure and the electromagnetic properties of the NZF ceramics were modified to a great extent by CaF2. Therefore, material characterization studies involving microstructural, dielectric and magnetic properties were conducted with respect to CaF2 content of ceramics and soak duration. The results showed that due to the presence of CaF2 in ceramics, significant improvements were achieved not only in kinetics of sintering but also in the parameters; DC electrical resistivity, dielectric constant and dielectric loss factor. For example, 1.0 wt% CaF2 added NZF ceramic produced in this study had a DC electrical resistivity of 1011 ?-cm which was أ100,000ؤ times bigger than the one attained in pure NZF ceramic. On the other hand, the dielectric constant exhibited a flat behavior up to 40 MHz with a value around 16. In addition, no resonance peak was observed in dielectric loss factor spectra, and the typical values of dielectric loss factor lied below 0.01. Besides the achievements mentioned, the magnetic properties such as relative magnetic loss factor and hysteresis parameters were also improved.

Suggestions

Thermoluminescence properties of fluorescent materials used in commercial lamps
Bulur, Enver; Wieser, A; Figel, M; Ozer, AM (1996-01-01)
The dosimetric properties of eight different fluorescent materials (FM) used in production of commercial fluorescent lamps were studied by thermoluminescence (TL). Taking into account the criteria for TL phosphors to be useful for radiation dosimetry, radiation sensitivity, thermal stability, shape of the glow curves, and effect of incandescence, UV and daylight on irradiated and non irradiated material were investigated. It was observed that most of the material can be used for radiation doses from 10 mu G...
Multi-frequency electrical conductivity imaging via contactless measurements
Özkan, Koray Özdal; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2006)
A multi-frequency data acquisition system is realized for subsurface conductivity imaging of biological tissues. The measurement procedures of the system at different frequencies are same. The only difference between the single frequency experiments and the multi-frequency experiments is the hardware, i.e. the sensor and the power amplifier used in the single frequency experiments was different than that were used in the multi-frequency experiments. To avoid confusion the measurement system with which the s...
Design and implementation of an open-source optically stimulated luminescence measurement system
Maraba, Diren; Bulur, Enver; Department of Physics (2017)
Optically Stimulated Luminescence (OSL) is the light emission from an irradiated solid (insulator or a wide band gap semiconductor) upon illumination with light of suitable wavelength. Although the phenomenon has been known for a long time, OSL has emerged as a practically applicable dosimetry technique in the past two decades. Recently introduced materials like alumina and beryllia have found use in the field of radiation dosimetry. The purpose of this study is to design and construct a simple multi-sample...
Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform
Gong, Yiyang; Makarova, Maria; Yerci, Selcuk; Li, Rui; Stevens, Martin J.; BAEK, Burm; Yerci, Selçuk; Hadfield, Robert H.; Dorenbos, Sander N.; ZWİLLER, Val; Vuckovic, Jelena; Dal Negro, Luca (2010-02-01)
Light emission at 1.54 mu m from an Er-doped amorphous silicon nitride layer coupled to photonic crystal resonators at cryogenic and room temperatures and under varying optical pump powers has been studied. The results demonstrate that small mode volume, high quality factor resonators enhance Er absorption and emission rates at the cavity resonance. Time resolved measurements give 11- to 17-fold Purcell enhancement of spontaneous emission at cryogenic temperatures, and 2.4-fold enhancement at room temperatu...
Infrared (IR) stimulated luminescence from feldspars with linearly increasing excitation light intensity
Bulur, Enver (1999-01-01)
IR stimulated luminescence signal from potassium and sodium feldspars were studied by linearly increasing the excitation power from zero to a maximum value during the readout. The peak shaped signals observed in both feldspars could be approximated using a linear combination of three first-order components as deduced by curve fitting. The thermal and radiation dose dependent behavior of the IR-stimulated OSL curves were also studied. (C) 1999 Elsevier Science Ltd. All rights reserved.
Citation Formats
M. B. Okatan, “Microstructure development in nickel zinc ferrites,” M.S. - Master of Science, Middle East Technical University, 2005.