Evaluation of cement mortars by ultrasound

Paksoy, Nesibe Gözde
Ultrasonic testing of concrete is often used for the assessment of its uniformity, strength, modulus of elasticity, durability and etc. therefore, the related parameters of testing such as the transducer frequency, the specimen geometry and etc. are well-known. On the other hand, most of the concrete properties are affected by the cement and the mechanical as well as some durability properties of cements are determined through cement mortars. Applications of ultrasound on determining the properties of cement mortars are quite limited. Therefore, the required specimen dimensions, transducer frequencies have not yet been established for cement mortars. In this study, ultrasonic pulse velocity (UPV) of mortars was determined with different transducers of different frequencies for different size ans shape of specimens. Within the scope of the experimental program, three different ultrasonic frequencies (54 kHz, 82 kHz, and 150 kHz) were utilized and the relation between ultrasonic testing frequency and specimen shape was experimentally investigated. It was concluded that the mechanical properties of mortar was adversely affected by the water-to-cement ratio. It was also observed that, when the length/wavelength ratio increases, the measured UPV with different transducer frequencies tends to converge to a single value. Finally, it was also concluded that an increase in moisture content of the mortar mixtures causes an increase in UPV and a decrease in compressive strength.
Citation Formats
N. G. Paksoy, “Evaluation of cement mortars by ultrasound,” M.S. - Master of Science, Middle East Technical University, 2006.