Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of retempering with superplasticizer on properties of prolonged mixed mineral admixture containing concrete a hot weather conditions
Download
index.pdf
Date
2005
Author
Yazan, Kazım
Metadata
Show full item record
Item Usage Stats
242
views
140
downloads
Cite This
Concrete which is manufactured in a mixing plant to be delivered to construction site in unhardened and plastic stage is called ready-mixed concrete. Because of technical and economical reasons, many mineral and chemical admixtures are used in ready-mixed concrete production. As a result of extra mixing and delayed placing of ready-mixed concrete (especially at hot weather conditions), there can be many problems about concrete, like slump loss. Addition of water for retempering concrete is the usual procedure, but addition of water without proper adjustment in mixture proportions, adversely affects compressive strength. During this study, effects of prolonged mixing and retempering with superplasticizer on properties of fresh and hardened concrete at hot weather conditions are observed. Some of the properties of concrete inspected are compressive strength, splitting tensile strength, slump and air content. All mixes contain air entrainer and water reducer at a standard amount. The difference between mixes comes from kind and amount of mineral admixture which cement is replaced by. During the study, fly ash, blast furnace slag, ground clay brick and natural pozzolan are used at amounts, 25% and 50% of cement. Also, a mixture of pure cement is prepared as control concrete. 15 cm initial slump is planned in the experimental work. After five minutes and at the end of first, second, third and fourth hours of mixing process, if needed retempering process is proceeded with superplasticizer and samples are taken. As a result of retempering with superplasticizer, the aimed slump values are obtained. The effects are than, observed. As a result of this study, it has been observed that replacing Portland cement with certain mineral admixtures, especially fly ash at certain amounts, can be a solution for slump loss problem, by retarding the slump loss effect of prolonged mixing.
Subject Keywords
Materials of Engineering and Construction.
,
Mechanics of Materials.
URI
http://etd.lib.metu.edu.tr/upload/3/12606751/index.pdf
https://hdl.handle.net/11511/15759
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effect of chemical and mineral admixtures on the fresh properties of self compacting mortars
Christianto, Heru Ari; Yaman, İsmail Özgür; Department of Civil Engineering (2004)
Fresh properties of mortars are important factors in altering the performance of self compacting concrete (SCC). Measurement of the rheological properties of the fine mortar part of concrete is generally used in the mix design of SCC. It can be stated that SCC rheology can be optimized if the fine mortar part of concrete is designed properly. However, measurement of the rheological properties is often impractical due to the need for complex equipment. Therefore, more practical methods of assessing mortar wo...
Various durability aspects of slurry infiltrated fiber concrete
Gilani, Adel Mohamed; Tokyay, Mustafa; Department of Civil Engineering (2007)
Slurry infiltrated fiber concrete (SIFCON) was first produced in 1979 in the USA, by incorporating large amounts of steel fiber in molds to form very dense network of fibers. The network is then infiltrated by a fine liquid cement-based slurry or mortar. The steel fiber content can be as high as 30 % by volume. This percentage usually does not exceed 2 % in normal fiber reinforced concrete (FRC) for reasons related to mixing and workability. Due to its high fiber content, SIFCON demonstrates unique and supe...
Properties of blended cements with thermally activated kaolin
Arikan, Metin; Sobolev, Konstantin; Ertuen, Tomris; Yeginobali, Asim; Turker, Pelin (Elsevier BV, 2009-01-01)
Kaolin, one of the materials of major importance for the ceramic and paper industry, is also used in the construction industry as a raw material for the production of white cement clinker and, in the form of metakaolin, as an artificial pozzolanic additive for concrete. Metakaolin is a vital component of high-performance and architectural concrete; however, its application in regular concrete is very limited due to relatively high production costs. This report evaluates the performance of a low-cost metakao...
Effect of geosynthetic reinforcement on the bearing capacity of strip footing on sandy soil
Al-Subari, L.; Hanafi, M.; Ekinci, A. (2020-08-01)
Due to the increasing presence of problematic soils, expansive clays and highly compressive sand engineers are using a verity of soil improvement techniques to treat such soils. While geosynthetics are extensively used for improving soil characteristics in roads, pavements and embankments, it can also be used to increase the lack of bearing capacity of residential housing or lightweight structures constructed on sandy soils. In order to simulate site conditions in the laboratory environment, a laboratory-sc...
Effect of Fly Ash Fineness on the Activation of Geopolymer Concrete
Aleessa Alam, Burhan; Yaman, İsmail Özgür (2012-10-05)
In the field of construction materials and particularly in concrete, cement is considered as a key element since it generates a strong and durable material through a simple hydration process. However, for many reasons (mainly economic and environmental) researchers are trying to find a new material that could replace cement or at least part of it as a binding agent in concrete. Regarding this issue, cement replacement materials like fly ash and slag have taken the lead during the last few decades. These mat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Yazan, “Effects of retempering with superplasticizer on properties of prolonged mixed mineral admixture containing concrete a hot weather conditions,” M.S. - Master of Science, Middle East Technical University, 2005.