Various durability aspects of slurry infiltrated fiber concrete

Gilani, Adel Mohamed
Slurry infiltrated fiber concrete (SIFCON) was first produced in 1979 in the USA, by incorporating large amounts of steel fiber in molds to form very dense network of fibers. The network is then infiltrated by a fine liquid cement-based slurry or mortar. The steel fiber content can be as high as 30 % by volume. This percentage usually does not exceed 2 % in normal fiber reinforced concrete (FRC) for reasons related to mixing and workability. Due to its high fiber content, SIFCON demonstrates unique and superior mechanical properties in the areas of both strength and ductility. Most of previous research work on SIFCON has focused mainly on investigating the mechanical properties of this material. On the other hand, the studies carried out in the field of durability of SIFCON are quite limited. v Therefore, it seemed that it would be worth to study the various durability aspects of SIFCON. In view of the above, the objectives of this study are to investigate and provide information about durability of SIFCON, mainly permeability, resistance to chloride penetration, freezing and thawing and drying shrinkage. This information will help in providing the necessary database and knowledge about the ability of SIFCON to withstand the conditions for which it has been designed without deterioration, especially when it is intended to be used in aggressive environments The investigations included studying the effects of the following on durability of SIFCON: (i) matrix type (slurry or mortar), (ii) fiber contents (7%, 9.5%, and 12% by volume), and (iii) steel fiber geometry (hooked or crimped). The results obtained indicated that SIFCON, especially when prepared using mortar not slurry, has shown good durability characteristics in spite of its apparent high water absorption. The SIFCON made with the highest possible fiber volume fractions showed the best results. However, it was concluded that SIFCON needs to be protected with suitable low permeability overlays to ensure ideal improved performance by protecting the steel fibers exposed on the surfaces especially against chloride attack.


Effects of retempering with superplasticizer on properties of prolonged mixed mineral admixture containing concrete a hot weather conditions
Yazan, Kazım; Turanlı, Lutfullah; Department of Civil Engineering (2005)
Concrete which is manufactured in a mixing plant to be delivered to construction site in unhardened and plastic stage is called ready-mixed concrete. Because of technical and economical reasons, many mineral and chemical admixtures are used in ready-mixed concrete production. As a result of extra mixing and delayed placing of ready-mixed concrete (especially at hot weather conditions), there can be many problems about concrete, like slump loss. Addition of water for retempering concrete is the usual procedu...
Determination of mechanical properties of hybrid fiber reinforced concrete
Yurtseven, Alp Eren; Tokyay, Mustafa; Department of Civil Engineering (2004)
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinfo...
Comprehensive Evaluation of AIMS Texture, Angularity, and Dimension Measurements
Mahmoud, Enad; Gates, Leslie; Masad, Eyad; Erdoğan, Sinan Turhan; Garboczi, Edward (American Society of Civil Engineers (ASCE), 2010-04-01)
Aggregates are the most widely used construction materials in the world in structures built from both asphaltic and portland cement concrete composites. The performance of these composites is affected by aggregate shape characteristics (e.g., angularity, texture, and dimensions). The aggregate imaging system (AIMS) is a computer automated system that was developed to measure aggregate shape characteristics using digital camera images of aggregates. This paper addresses four issues concerning AIMS measuremen...
Structural lightweight concrete with natural perlite aggregate and perlite powder
Aşık, Mesut; Turanlı, Lutfullah; Department of Civil Engineering (2006)
Structural lightweight aggregate concrete is an important and versatile material, which offers a range of technical, economic and environmental-enhancing and preserving advantages and is designed to become a dominant material in the new millennium. For structural application of lightweight concrete, the density is often more important than the strength. A decreased density for the same strength level reduces the self-weight, foundation size and construction costs. Structural lightweight aggregate concrete g...
Analysis of mechanical behavior of high performance cement based composite slabs under impact loading
Satıoğlu, Azize Ceren; Gülkan, Polat; Department of Civil Engineering (2009)
Studies on the behavior of steel fiber reinforced concrete (SFRC) and slurry infiltrated fibrous concrete (SIFCON) to impact loading have started in recent years. Using these relatively new materials, higher values of tensile and compressive strength can be obtained with greater fracture toughness and energy absorption capacity, and therefore they carry a considerable importance in the design of protective structures. In this thesis, computational analyses concerning impact loading effect on concrete, steel...
Citation Formats
A. M. Gilani, “Various durability aspects of slurry infiltrated fiber concrete,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.