Elucidation of r gene mediated yellow rust disease resistance mechanism in wheat by dual bait yeast two-hybrid analysis

Download
2005
Yıldırım, Figen
Yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriksson is one of the most severe leaf diseases of wheat. Aim of this study is to illuminate the downstream signaling pathways upon incompetible infection of rust pathogen in wheat, thus to understand the genes involved in resistance mechanism. The strategy used is the dual bait yeast two-hybrid analysis which is the most powerful method for in vivo detection of protein-protein interactions. The bait proteins used are; the domains of Yr10 yellow rust resistance gene, Rad6 gene which is considered to have a critical role in R gene mediated signaling pathway, and WR5 gene fragment which is an unknown protein having homology to the WD40 repeat containing protein with apoptosis related activity. Screening of a yeast prey library with these baits revealed proteins having mostly apoptosis related functions (SRP72, POR1, CSE1), translation initiation control in response to stress conditions (Gcn2p, Eap1p), phosphorylation (SKY1) and dephosphorylation activities (GAC1), cell cycle control (FAR1), oxidative stress control (OXR1), protein degradation control (TOM1), protein folding control (CPR7) and ion homeostasis in the cell (POR1, GAC1). The significance of the study can be summarized as i) being the first yeast two hybrid analysis of a wheat R gene, ii) being able to detect interacting partners with anticipated functions, iii) most importantly, initiating further detailed analysis of the key interactors.

Suggestions

Detection of differentially expressed genes upon compatible and incompatible inoculation of wheat with yellow rust using suppression subtractive hybridization (SSH)
Çelik, İlay; Akkaya, Mahinur S.; Department of Biotechnology (2007)
Yellow rust disease is one of the most important problems in wheat production. It causes substantial yield losses throughout the world. There are resistant and susceptible wheat varieties to various yellow rust pathotypes. In this thesis genes that are induced in wheat, in virulence and avirulence conditions upon yellow rust inoculations were investigated. Consequently, it was aimed to identify genes that may be playing critical roles in the disease resistance mechanism. The strategy was to construct subtra...
The genetic basis of malathion resistance in housefly (Musca domestica L.) strains from Turkey
Taskin, V; Kence, M (Springer Science and Business Media LLC, 2004-11-01)
Organophosphate insecticide (parathion/diazinon) resistance in housefly ( Musca domestica L.) is associated with the change in carboxylesterase activity. The product of MdalphaE7 gene is probably playing a role in detoxification of xenobiotic esters. In our research, we have isolated, cloned and sequenced the MdalphaE7 gene from five different Turkish housefly strains. High doses of malathion ( 600 mug/fly) were applied in a laboratory environment for one year to Ceyhan1, Ceyhan2, Adana, and Ankara strains ...
Cloning, transformation and wheat infiltration assay of a puccinia striiformis f. sp. tritici effector candidate
Özketen, Ahmet Çağlar; Akkaya, Mahinur S.; Department of Biotechnology (2013)
The stripe rust pathogen, Puccinia striiformis f. sp. tritici is the causative agent of the yellow (stripe) rust which is globally one of the most devastating and economically significant diseases in wheat. Although using fungicide can present a practical solution against the disease, an efficient, better and environmentally safer approach is needed to grow disease free wheat. To achieve this, better comprehension of the plant-pathogen interaction at the molecular and cellular level is required. The pathoge...
Deletion mutation of GLNB and GLNK genes in rhodobacter capsulatus to enhance biohydrogen production
Pekgöz, Gülşah; Gündüz, Ufuk; Eroğlu, İnci; Department of Biotechnology (2010)
Rhodobacter capsulatus is a photosynthetic, purple non-sulfur (PNS) bacterium that produces biohydrogen via photofermentation. Nitrogenase enzyme is responsible for hydrogen production; during fixation of molecular nitrogen into ammonium, hydrogen is produced. Since this process is an energetically expensive process for the cell, hydrogen production is strictly controlled at different levels. When ammonium is present in the environment, hydrogen production completely ceases. The key proteins in the regulati...
Morphometric and genetic differentiation between anatolia and Cyprus bonbus(bombus)terrestris (l.1758)populations
Beton, Damla; Kence, Aykut; Department of Biology (2004)
Four microsatellite loci were used to investigate differentiation in Bombus terrestris, a bumblebee of interest for its high value crops pollination. Two bumblebee populations, one from Ankara (the capital of Turkey) and one from North Cyprus were analyzed. In these populations, the total number of alleles detected per polymorphic locus ranged from 7 to 12. FST genetic distance between Ankara and North Cyprus B. terrestris populations based on four microsatellite loci was calculated as 0,09351. This applies...
Citation Formats
F. Yıldırım, “Elucidation of r gene mediated yellow rust disease resistance mechanism in wheat by dual bait yeast two-hybrid analysis,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.