Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Milimeter wave microstrip launchers and antenna arrays
Download
index.pdf
Date
2006
Author
Akgün, Erdem
Metadata
Show full item record
Item Usage Stats
225
views
89
downloads
Cite This
Coaxial-to-microstrip launcher and microstrip patch array antenna are designed to work at center frequency of 36.85 GHz with a bandwidth higher than 300 MHz. The antenna array design also includes the feeding network distributing the power to each antenna element. The design parameters are defined on this report and optimized by using an Electromagnetic Simulation software program. In order to verify the theoretical results, microstrip patch array antenna is produced as a prototype. Measurements of antenna parameters, electromagnetic field and circuit properties are interpreted to show compliance with theoretical results. The values of deviation between theoretical and experimental results are discussed as a conclusion.
Subject Keywords
Electronics.
URI
http://etd.lib.metu.edu.tr/upload/12607863/index.pdf
https://hdl.handle.net/11511/16181
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Millimeter wave gunn diode oscillators
Lüy, Ülkü; Toker, Canan; Department of Electrical and Electronics Engineering (2007)
This thesis presents the design and implementation of a millimeter-wave Gunn diode oscillator operating at 35 GHz (Ka (R) 26.5-40 GHz Band). The aim of the study is to produce a high frequency, high power signal from a negative resistance device situated in a waveguide cavity by applying a direct current bias. First the physics of Gunn diodes is studied and the requirements that Gunn diode operates within the negative differential resistance region is obtained. Then the best design configuration is selected...
Cmos class e power amplifier modelling and design including channel resistance effects
Demir, İbrahim; Demir, Şimşek; Department of Electrical and Electronics Engineering (2004)
CMOS is the favorite candidate process for the high integration of the wireless communication IC blocks, RF frontend and digital baseband circuitry. Also the design of the RF power amplifier stage is the one of the most important part of the RF CMOS circuit design. Since high frequency and high power simultaneously exists on this stage, devices works on the limits of the process. Therefore standard device models may not be valid enough for a successful design. In the thesis high frequency passive device and...
Efficient analysis of large array antennas
Ovalı, Fatih; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2004)
Large phased array antennas are widely used in many military and commercial applications. The analysis of large arrays containing many antenna or frequency-selective (FSS) surface elements is inefficient or intractable when brute force numerical methods are used. For the efficient analysis of such structures hybrid methods (analytic and numerical, numerical and numerical) can be used. In this thesis, a hybrid method combining the uniform geometrical theory of diffraction (UTD) and the moment method (MoM) us...
Solution of the antenna palcement problem by means of global optimization techniques
Ural, Mustafa; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2010)
In this thesis work, minimization of platform-based coupling between the antennas of two VHF radios on an aircraft platform and two HF radios on a ship platform is aimed. For this purpose; an optimal antenna placement, which yields minimum average coupling between the antennas over the whole frequency band of operation is determined for each platform. Two important global optimization techniques, namely Genetic Algorithm Optimization and Particle Swarm Optimization, are used in determination of these optima...
Development of K band microstrip patch antenna array for traffic radars
Aydemir, Aslı Eda; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2017)
In this thesis work, two microstrip patch antenna arrays are designed for the traffic radar applications. Both of them operate at the 24.125 GHz with 250 MHz bandwidth. Two different series feed networks are used, namely shunt connected series feed network and in line coupled series feed network. The one with shunt connected series feed network is manufactured and measured to make comparisons with the simulation results. It is observed that simulation and measurement results are very similar. 7 degree beamw...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Akgün, “Milimeter wave microstrip launchers and antenna arrays,” M.S. - Master of Science, Middle East Technical University, 2006.