Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Gas turbine monitoring system
Download
index.pdf
Date
2006
Author
Özmen, Teoman
Metadata
Show full item record
Item Usage Stats
144
views
56
downloads
Cite This
In this study, a new gas turbine monitoring system being able to carry out appropriate run process is set up for a gas turbine with 250 kW power rating and its accessories. The system with the mechanical and electrical connections of the required sub-parts is transformed to a kind of the test stand. Performance test result calculation method is described. In addition that, performance evaluation software being able to apply with the completion of the preliminary performance tests is developed for this gas turbine. This system has infrastructure for the gas turbine sub-components performance and aerothermodynamics research. This system is also designed for aviation training facility as a training material for the gas turbine start and run demonstration. This system provides the preliminary gas turbine performance research requirements in the laboratory environment.
Subject Keywords
Aeronautical Engineering.
URI
http://etd.lib.metu.edu.tr/upload/12607957/index.pdf
https://hdl.handle.net/11511/16225
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical and experimental investigation of flow through a cavitating venturi
Yazıcı, Bora; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2006)
Cavitating venturies are one of the simplest devices to use on a flow line to control the flow rate without using complex valve and measuring systems. It has no moving parts and complex electronic systems. This simplicity increases the reliability of the venturi and makes it a superior element for the military and critical industrial applications. Although cavitating venturis have many advantages and many areas of use, due to the complexity of the physics behind venturi flows, the characteristics of the ven...
Enhancement of the bottoming cycle in a gas/steam combined cycle power plant
Safyel, Zerrin; Yeşin, Tülay; Department of Mechanical Engineering (2005)
A combined cycle gas/steam power plant combines a gas turbine (topping cycle) with a steam power plant (bottoming cycle) through the use of a heat recovery steam generator. It uses the hot exhaust of the gas turbine to produce steam which is used to generate additional power in the steam power plant. The aim of this study is to establish the different bottoming cycle performances in terms of the main parameters of heat recovery steam generator and steam cycle for a chosen gas turbine cycle. First of all; fo...
First and second law analyses of a biomass fulled solid oxide fuel ceel-micro turbine hybrid system
Arabacı, Selin; Yüncü, Hafit; Department of Mechanical Engineering (2008)
Fuel cells are direct energy conversion devices to generate electricity. They have the lowest emission level of all forms of electricity generation. Fuel cells require no combustion of the fuel. The thermal energy gained from fuel cells may be utilized in micro turbines (gas turbines). In this work, first and second law analyses are performed on a hybrid system consisting of a solid oxide fuel cell (SOFC) combined with a micro turbine to be able to find an optimum point of pressure and corresponding mass ra...
Experimental and computational investigation of the emergency coolant injection effect in a candu inlet header
Turhan, K. Zafer; Yeşin, Ahmet Orhan; Department of Mechanical Engineering (2009)
Inlet headers in the primary heat transport system(PHTS) of CANDU type reactors, are used to collect the coolant coming from the steam generators and distribute them into the reactor core via several feeders. During a postulated loss of coolant accident (LOCA), depressurization and vapor supplement into the core may occur, which results a deterioration in the heat transfer from fuel to the coolant. When a depressurization occurs, “Emergency Coolant Injection(ECI)” system in the PHTS in CANDU reactors, is au...
Design and implementation of a current source converter based active power filter for medium voltage applications
Terciyanlı, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2010)
This research work is devoted to the design, development and implementation of a Current Source Converter (CSC) based Active Power Filter (APF) for Medium Voltage (MV) applications. A new approach has been proposed to the design of the CSC based APF for reducing the converter kVA rating considerably. This design approach is called the Selective Harmonic Amplification Method (SHAM), and is based on the amplification of some selected harmoniccurrent components of the CSC by the input filter, and the CSC contr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Özmen, “Gas turbine monitoring system,” M.S. - Master of Science, Middle East Technical University, 2006.