Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy

Atılgan, Serdar
Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursiut of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a succesful clinical agent. There are many reported or commercially available photosensitizers, but most have limitations, such as low photostability, or a limited usable range of solvent conditions. In this study, we introduced a novel class of extended conjugation water soluble boradiazaindacene dyes which are efficient singlet oxygen generators. These sensitizers have strong absorptions in the therapeutic window and have spectacular photoinduced cytotoxicity. In addition, they display no dark toxicity at the active concentrations. With these remarkable properties, they are likely to find applications as promising new reagents for photodynamic therapy.


Efficient synthesis of novel near ir emitting distyrylboradiazaindacene sensitizers for photodynamic therapy
Dost, Zeynep; Akkaya, Engin Umut; Department of Chemistry (2006)
Photodynamic therapy (PDT) is a noninvasive method of treating malignant tumors and age-related macular degeneration. Current practice of PDT is limited to a few functionalized porphyrins, however these compounds are not considered to be ideal drugs for use in PDT. Among the limitations, the most prominent is the low extinction coefficient of porphyrins in the body’s therapeutic window. Therefore, there is a significant impetus to develop novel and better efficiency sensitizers for use in PDT. Boradiazainda...
Benzaldehyde lyase catalyzed synthesis of novel acyloins
Şimşek, İlke; Demir, Ayhan Sıtkı; Department of Chemistry (2009)
α-Hydroxy phosphonates are versatile building blocks for the synthesis of many biologically active compounds that display antiviral, antibacterial, anticancer, pesticide activities beside their enzyme inhibitory activities such as they are the inhibitors of rennin or human immunodeficiency virus (HIV) protease and polymerase. Benzaldehyde lyase is able to catalyze not only C-C bond formation reactions but also C-C bond breaking reactions with high enantioselectivity that brings about the development of new ...
Chemoenzymatic synthesis of chiral hydroxymethyl cycloalkenols
Şenocak, Deniz; Demir, Ayhan Sıtkı; Department of Chemistry (2004)
Chiral cyclic alkenols with hydroxymethyl functionality are important structural units in many biologically active natural compouds such as prostaglandins, sesquiterpene antiviral agents, pentenomycins, xanthocidin, sarkomycin, etc. 1,3-cycloalkanediones are converted into bicyclic polyoxo derivatives with formaldehyde and trioxane in the presence of Lewis acid. Selective oxidation of the bicyclic compounds by using manganese(III)acetate followed by enzyme-catalyzed kinetic resolution afforded chiral bicycl...
Zora, Metin (American Chemical Society (ACS), 1994-02-25)
Reaction of chromium carbene complexes and 1-alkynylcyclobutenols leads to 2-alkenyl-4-cyclopentene-1,3-diones. Initial allkyne insertion affords a highly electrophilic carbene complex, which then undergoes an alkyl shift-ring expansion, ultimately producing 2-alkenyl-4-cyclopentene-1,3-diones.
Enantioselective Michael Addition of Nitroalkanes to Nitroalkenes Catalyzed by Chiral Bifunctional Quinine-Based Squaramides
Kanberoğlu, Esra; Tanyeli, Cihangir (Wiley, 2015-10-26)
A family of chiral bifunctional acid-/base-type quinine/squaramide organocatalysts is shown to be highly active promoters of the conjugate addition of 1-nitropropane to various trans-β-nitroalkenes. The cooperation of the quinine and the sterically encumbered squaramide moieties catalyzed the Michael addition reactions at 0 °C by using a catalyst loading of only 2 mol % to afford the 1,3-dinitro Michael adducts with excellent enantioselectivity and diastereoselectivity (up to 95 % ee and syn/anti isomers
Citation Formats
S. Atılgan, “Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy,” M.S. - Master of Science, Middle East Technical University, 2006.