Genetic diversity of scald (rhynchosporium secalis) disease resistant and sensitive Turkish barley seed sources as determined with simple sequence repeats

Download
2006
Dizkırıcı, Ayten
Scald disease (Rhynchosporium secalis) is one of the major plant diseases causing considerable yield loss in barley (Hordeum vulgare) plantations in Turkey. To develop, scald resistant barley varieties, C.R.I.F.C. of Turkey has a large accumulated collection of barley seed sources in hand, but these samples are difficult to be followed and used in the breeding programs due to lack of genetic studies on them. Thus, the objective of this study was to characterize and fingerprint of eighty barley seed sources, and assess the magnitude and pattern of genetic diversity that could be used to have more efficient scald disease resistant breeding programs in the future. Forty scald disease resistant and 40 scald sensitive Turkish barley seed sources were screened using 6 simple sequence repeats (SSR) primers. Each of barley seed source were represented with four seeds, assuming they are genetically uniform since barley is a self-pollinated crop. Estimated genetic parameters indicated that scald disease resistant and sensitive barley seed sources still maintain large amount of genetic diversity. For example, expected heterozygosity was 0.62±0.01 and 0.64±0.01 for resistant and sensitive Turkish barley seed sources, respectively. Thirty-nine percent of total genetic variation was between populations for resistant and 46% for sensitive group, while 61% of total variation was within populations for resistant group and 54% for sensitive group. When overall Turkish barley seed sources were considered, genetic distances between scald sensitive seed source S18 and resistant R1 as well as between sensitive S28 and resistant R1 were large. Scald resistant and sensitive barley seed sources were generally located in different clusters in dendrogram. The presence of R25, R39 and S16 barley seed sources with high genetic diversity parameters among studied seed sources, suggests that this diversity could be important drive in future barley breeding program in Turkey. However, further study is needed to illustrate genetic divergence of Turkish barley seed sources with use of more molecular markers.

Suggestions

Genetic differentiation of Liquidambar Orientalis Mill. varieties with respect to matK region of chloroplast genome
Özdilek, Aslı; Kaya, Zeki; Department of Biology (2007)
Liquidambar L. genus is represented with mainly 4 species in the world and one of these species, Turkish sweet gum (Liquidambar orientalis Mill.) which is a relictendemic species is naturally found in only southwestern Turkey, mainly in Muğla Province. The limited distribution of species with two disputed varieties (var. integriloba Fiori and var. orientalis) and increased anthropogenic threats to its genetic resources signify the importance of studying genetic diversity in the species to have better conser...
Detection of differentially expressed genes upon compatible and incompatible inoculation of wheat with yellow rust using suppression subtractive hybridization (SSH)
Çelik, İlay; Akkaya, Mahinur S.; Department of Biotechnology (2007)
Yellow rust disease is one of the most important problems in wheat production. It causes substantial yield losses throughout the world. There are resistant and susceptible wheat varieties to various yellow rust pathotypes. In this thesis genes that are induced in wheat, in virulence and avirulence conditions upon yellow rust inoculations were investigated. Consequently, it was aimed to identify genes that may be playing critical roles in the disease resistance mechanism. The strategy was to construct subtra...
Development of salt resistant transgenic plants by using TaNHX1 and TaSTR genes
Kavas, Musa; Yücel, Ayşe Meral; Öktem, Hüseyin Avni; Department of Biology (2011)
Soil salinity negatively affects agricultural production in Turkey by decreasing the yield and quality. Direct introduction of stress related genes by genetic engineering is one of the most rapid approaches to develop stress tolerant crops. In this study, TaNHX1 gene was isolated from bread wheat and three different local wheat cultivars were transformed with overexpression vectors containing TaNHX1 gene by using Agrobacterium-mediated and particle bombardment gene transfer techniques. Immature embryo and i...
Genetic transformation of lentil ( Lens culinaris m. cv.Sultan.1) with a transcription factor regulator (MBF1c) and analysis of transgenic plants
Kamçı, Hamdi; Çelikkol Akçay, Ufuk; Kamçı, Hamdi; Department of Biotechnology (2011)
Agrobacterium mediated genetic transformation of lentil Sultan 1 cultivar with MBF1c and evaluation of transgenic plants was aimed. The study was initially based on optimized protocol with Agrobacterium tumefaciens KYRT1 strain and pTJK136 binary plasmid. Based on this protocol and transient marker gene expression in embryo apex, 15% stable transformation efficiency was aimed. However limited knowledge about pTJK136 and problem with curing KYRT1 leaded us to use Agrobacterium tumefaciens C58C1 strain and al...
Evaluation of salt tolerance in sto transformed Arabidopsis thaliana and Nicotiana tabacum plants
Selçuk, Feyza; Yücel, Ayşe Meral; Department of Biology (2004)
Salinity is one of the limiting factors of crop development. Together with causing water loss from plant tissues, salinity also leads to ion toxicity. Under salt stress, increase in Ca+2 concentration in cytosol can decrease the deleterious effects of stress. The binding of Ca+2 to calmodulin initiates a signaling cascade involving the activation of certain transcription factors like STO and STZ. This signal transduction pathway regulates transport of proteins that control net Na+ influx across the plasma m...
Citation Formats
A. Dizkırıcı, “Genetic diversity of scald (rhynchosporium secalis) disease resistant and sensitive Turkish barley seed sources as determined with simple sequence repeats,” M.S. - Master of Science, Middle East Technical University, 2006.