Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of salt resistant transgenic plants by using TaNHX1 and TaSTR genes
Download
index.pdf
Date
2011
Author
Kavas, Musa
Metadata
Show full item record
Item Usage Stats
349
views
484
downloads
Cite This
Soil salinity negatively affects agricultural production in Turkey by decreasing the yield and quality. Direct introduction of stress related genes by genetic engineering is one of the most rapid approaches to develop stress tolerant crops. In this study, TaNHX1 gene was isolated from bread wheat and three different local wheat cultivars were transformed with overexpression vectors containing TaNHX1 gene by using Agrobacterium-mediated and particle bombardment gene transfer techniques. Immature embryo and inflorescence of Triticum durum cv. Kızıltan-91 and Triticum aestivum cv. Yüreğir-89 and mature embryo of Triticum durum cv. Mirzabey-2000 were used as an explant. In this manner, totally 8960 and 5650 explants were used during particle bombardment and Agrobacterium-mediated transformation, respectively. Moreover, leaves of Nicotiana tabacum cv. Petit Havana were transformed by TaSTR gene to develop salt resistant transgenic tobacco plants by using Agrobacterium-mediated transformation. Stable expression and inheritance of the transgenes was confirmed by both genetic and molecular analyses. T1 progeny showed segregation of the transgenes in a typical Mendelian fashion in most of the plants. Expression of TaSTRG in tobacco was evaluated by physiological and biochemical analysis, such as germination test, root length and MDA analysis. In addition to the nuclear transformation, chloroplast transformation of tobacco was performed with Xyl10B gene responsible for the synthesis of hyperthermostable xylanase enzyme. Stable integration of transgenes and homoplasmy were confirmed with PCR and Southern blotting.
Subject Keywords
Plant genetics.
URI
http://etd.lib.metu.edu.tr/upload/12613500/index.pdf
https://hdl.handle.net/11511/21171
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Genetic diversity of scald (rhynchosporium secalis) disease resistant and sensitive Turkish barley seed sources as determined with simple sequence repeats
Dizkırıcı, Ayten; Kaya, Zeki; Department of Biology (2006)
Scald disease (Rhynchosporium secalis) is one of the major plant diseases causing considerable yield loss in barley (Hordeum vulgare) plantations in Turkey. To develop, scald resistant barley varieties, C.R.I.F.C. of Turkey has a large accumulated collection of barley seed sources in hand, but these samples are difficult to be followed and used in the breeding programs due to lack of genetic studies on them. Thus, the objective of this study was to characterize and fingerprint of eighty barley seed sources,...
Evaluation of salt tolerance in sto transformed Arabidopsis thaliana and Nicotiana tabacum plants
Selçuk, Feyza; Yücel, Ayşe Meral; Department of Biology (2004)
Salinity is one of the limiting factors of crop development. Together with causing water loss from plant tissues, salinity also leads to ion toxicity. Under salt stress, increase in Ca+2 concentration in cytosol can decrease the deleterious effects of stress. The binding of Ca+2 to calmodulin initiates a signaling cascade involving the activation of certain transcription factors like STO and STZ. This signal transduction pathway regulates transport of proteins that control net Na+ influx across the plasma m...
Identification and cloning of genes induced and / or repressed upon treatments of wheat plants (avocet s) with BTH, BABA and Trichoderma Harzianum Raifi KRL-AG2
Al-Asbahi, Adnan; Akkaya, Mahinur S.; Department of Biotechnology (2006)
One of the major problems concerning the production of food crops is the controlling of plant diseases to maintain the high quality and yield. Wheat diseases are caused by parasitic bacteria, fungi and viruses that are a major hazard in wheat production. Therefore, understanding of any resistance mechanism is prerequisite for the successful utilization of wheat crop species in modern agriculture. The phenomenon of induced resistance by fungi, bacteria, microbial elicitors and chemicals has been investigated...
Transformation of tobacco with a NAC type transcription factor, tanac69-1 and characterization of transgenic plants via molecular and physiological techniques
Eroğlu, Ayten; Yücel, Ayşe Meral; Öktem, Hüseyin Avni; Department of Biotechnology (2015)
Environmental stresses such as drought and salinity greatly affect plant production leading to reduction in yield and quality. Stress tolerant plants can be rapidly produced by transferring stress related genes or transcription factors to crop plants. In this study, TaNAC69-1 gene, a NAC type transcription factor, was isolated from Triticum aestivum L. cv. Yüreğir-89 and cloned into a Gateway compatible overexpression vector, pEarleyGate 100. Transformation of Nicotiana tabacum L. cv. Samsun leaves was carr...
Genetic transformation of lentil ( Lens culinaris m. cv.Sultan.1) with a transcription factor regulator (MBF1c) and analysis of transgenic plants
Kamçı, Hamdi; Çelikkol Akçay, Ufuk; Kamçı, Hamdi; Department of Biotechnology (2011)
Agrobacterium mediated genetic transformation of lentil Sultan 1 cultivar with MBF1c and evaluation of transgenic plants was aimed. The study was initially based on optimized protocol with Agrobacterium tumefaciens KYRT1 strain and pTJK136 binary plasmid. Based on this protocol and transient marker gene expression in embryo apex, 15% stable transformation efficiency was aimed. However limited knowledge about pTJK136 and problem with curing KYRT1 leaded us to use Agrobacterium tumefaciens C58C1 strain and al...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kavas, “Development of salt resistant transgenic plants by using TaNHX1 and TaSTR genes,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.