Numerical modeling of wave diffraction in one-dimensional shoreline change model

Download
2006
Baykal, Cüneyt
In this study, available coastal models are briefly discussed and under wind waves and a numerical shoreline change model for longshore sediment transport based on “one-line” theory is developed. In numerical model, wave diffraction phenomenon in one-dimensional modeling is extensively discussed and to represent the irregular wave diffraction in the sheltered zones of coastal structures a simpler approach based on the methodology introduced by Kamphuis (2000) is proposed. Furthermore, the numerical model results are compared with analytical solutions of accretion and erosion at a single groin. An application to a case study of a groin field constructed to the east side of Kızılırmak river mouth, at Bafra alluvial plain, is carried out by the numerical model. The results of comparisons show that the numerical model is in good agreement with the analytical solutions of shoreline changes at a groin. Similarly, numerical model results are compared with field data of Bafra and it is shown that they are in good agreement qualitatively. Therefore, the numerical model is accepted to be capable of representing of shoreline evolution qualitatively even for complex coastal regions.

Suggestions

A one-line numerical model for shoreline evolution under the interaction of wind waves and offshore breakwaters
Artagan, Salih Serkan; Ergin, Ayşen; Department of Civil Engineering (2006)
A numerical model based on one-line theory is developed to evaluate the wind wave driven longshore sediment transport rate and shoreline change. Model performs wave transformation from deep water through the surf zone and computes the breaking parameters. The formula of longshore sediment transport rate used in the numerical model is selected as a result of comparative studies with the similar expressions and the field measurements. Offshore breakwater module of the numerical model is developed to compute t...
An implicit one-line numerical model on longshore sediment transport
Esen, Mustafa; Ergin, Ayşen; Department of Civil Engineering (2007)
In this study, a numerical model “Modified Coast-Structure Interaction Numerical Model” (CSIM) is developed with an implicit approach to determine the shoreline changes due to wind wave induced longshore sediment transport under the presence of groins, T-groins and offshore breakwaters by making modifications on the explicit numerical model “Coast-Structure Interaction Numerical Model” (CSI). Using representative wave data transformed to a chosen reference depth from deep water, numerical model (CSIM) simul...
Numerical modeling of grounwater flow behavior in response to beach dewatering
Goler, Güneş; Önder, Halil; Department of Civil Engineering (2004)
In this study, The Beach Dewatering System, a relatively recent technology to combat beach erosion, which is proposed as a practical alternative to more traditional shoreline stabilization methods, is investigated and an informative overview on the genesis, development and recent use of this technique is provided. On the basis of the link existing between the elevation of beach groundwater and erosional or accretionary trends at the beach face, a numerical model that simulates groundwater flow in a coastal ...
Numerical modeling of wind wave induced longshore sediment transport
Şafak, Ilgar; Ergin, Ayşen; Department of Civil Engineering (2006)
In this study, a numerical model is developed to determine shoreline changes due to wind wave induced longshore sediment transport, by solving sediment continuity equation and taking one line theory as a base, in existence of seawalls, groins, T-groins, offshore breakwaters and beach nourishment projects, whose dimensions and locations may be given arbitrarily. The model computes the transformation of deep water wave characteristics up to the surf zone and eventually gives the result of shoreline changes wi...
Modelling long term morphological change using XBeach
Söğüt, Erdinç; Yalçıner, Ahmet Cevdet; Güler, Işıkhan; Department of Civil Engineering (2014)
In this study, the XBeach Model, a two-dimensional depth averaged coupled hydrodynamic and morphologic numerical model, is used to determine the long-term behaviour of sediment transport process and morphological changes in Yumurtalık region in Adana, Turkey. Firstly, general information about the types of sediment transport processes and available coastal numerical models is given. Secondly, the structure of XBeach model, the boundary conditions and the model parameters that need to be defined are briefly ...
Citation Formats
C. Baykal, “Numerical modeling of wave diffraction in one-dimensional shoreline change model,” M.S. - Master of Science, Middle East Technical University, 2006.