Investigation of sugar metabolism in rhizopus oryzae

Download
2007
Büyükkileci, Ali Oğuz
Rhizopus oryzae is a filamentous fungus, which can produce high amounts of L(+)-lactic acid and produces ethanol as the main by-product. In an effort to understand the pyruvate branch point of this organism, fermentations under different inoculum and glucose concentrations were carried out. At low inoculum size (1x103 spores ml-1), high amount of lactate (78 g l-1) was produced, whereas high ethanol concentration (37 g l-1) was obtained at high inoculum sizes (1x106 spores ml-1). Decreasing working volume increased lactate production significantly at high inoculum sizes (1x105 and 1x106 spores ml-1), but did not influenced the physiology at low inoculum sizes (1x103 and 1x104 spores ml-1). In shake flask cultures, at low initial glucose concentrations biomass yield was high and lactate and ethanol yields were low. Higher lactate and ethanol and lower biomass yields were obtained by increasing the initial glucose concentrations. In alginate immobilized, semi-continuous cultures with cell retention, glucose level in the medium was kept at low values. Like in shake flask cultures, as the glucose concentration decreased lactate and ethanol yields decreased and biomass yields increased. Increasing the glucose concentration by a pulse of glucose caused increases in branch point enzyme activities, as well as in concentrations of the metabolites. In fed batch cultures higher biomass yield (0.25 g DCW g glucose-1) could be obtained. Lactate dehydrogenase was influenced by the inoculum size and glucose concentration more than pyruvate decarboxylase and alcohol dehydrogenase. It showed higher activity at lactate producing fermentations. Unlike lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase showed high activity even at low glucose concentrations.

Suggestions

Biochemical and genetic studies on the pyruvate branch point enzymes of rhizopus oryzae
Açar, Şeyda; Hamamcı, Haluk; Department of Biotechnology (2004)
Rhizopus oryzae is a filamentous fungi which produces lactic acid and ethanol in fermentations. R. oryzae has numerous advantages for use industrial production of L-(+)-lactic acid but the yield of lactic acid produced on the basis of carbon consumed is low. Metabolic flux analysis of R. oryzae has shown that most of the pyruvate produced at the end of the glycolysis is channelled to ethanol, acetyl-CoA and oxaloacetate production. This study aimed to answer some questions addressed on the regulation of pyr...
Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels
Sreekumar, Sanil; Baer, Zachary C.; Pazhamalai, Anbarasan; Günbaş, Emrullah Görkem; Grippo, Adam; Blanch, Harvey W.; Clark, Douglas S.; Toste, F. Dean (Springer Science and Business Media LLC, 2015-03-01)
Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producin...
Identification of ligand binding regions of the Saccharomyces cerevisiae alpha-factor pheromone receptor by photoaffinity cross-linking
Son, Çağdaş Devrim; Naider, F; Becker, JM (American Chemical Society (ACS), 2004-10-19)
Analogues of alpha-factor, Saccharomyces cerevisiae tridecapeptide mating pheromone (H-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-OH), containing p-benzoylphenylalanine (Bpa), a photoactivatable group, and biotin as a tag, were synthesized using solid-phase methodologies on a p-benzyloxybenzyl alcohol polystyrene resin. Bpa was inserted at positions 1, 3, 5, 8, and 13 of alpha-factor to generate a set of cross-linkable analogues spanning the pheromone. The biological activity (growth arrest assay) ...
Investigation for natural extract inhibitors of bovine lens aldose reductase responsible for the formation of diabetis dependent cataract
Onay, Melih; Çoruh, Nursen; Department of Biochemistry (2008)
In the polyol pathway, Aldose reductase (AR) is an important enzyme in reduction of aldehydes and aldosugars to their suitable alcohols. AR, using NADPH as a coenzyme, has a molecular weight of 37 000 dalton. AR in its activated form, known to increase the sorbitol accumulation in lens, is responsible for the cataract formation in diabetis diseases. Therefore, the inhibition of aldose reductase is important to prevent the incedence of cataract formation in diabetus mellitus. In the treatment of diabetis dep...
Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production
Akman, Melih Can; Erguder, Tuba Hande; Gündüz, Ufuk; Eroglu, Inci (2014-01-01)
Biohydrogen, which can be produced by dark fermentation and photofermentation processes, is a renewable and clean approach for hydrogen production. In this study, it was aimed to determine the operational conditions which satisfy the highest photofermentative hydrogen production rate in batch reactors. To that purpose, the effects of initial substrate concentration, initial volatile suspended solids (VSS) concentration and light intensity on photofermentation process were investigated by using Response Surf...
Citation Formats
A. O. Büyükkileci, “Investigation of sugar metabolism in rhizopus oryzae,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.