Demand driven disassembly planning

Download
2007
Ertem, Tulû
In this thesis, we deal with the demand driven disassembly planning. The main aim of the study is to construct heuristic approaches according to the suggested improvements in the literature. These heuristic approaches are further improved by recognizing the key points of the disassembly planning problem. All of the solution approaches aim minimizing total cost related to relevant costs of disassembly operations. Another subject given attention in this thesis is the importance of the setup cost on the disassembly planning, which has not been studied yet in the literature to the best of our knowledge. Computational studies are carried out to assess the performance of the heuristic procedures proposed.

Suggestions

Disassembly line balancing problem with fixed number of workstations and finite supply
Göksoy, Eda; Azizoğlu, Meral; Department of Industrial Engineering (2010)
In this thesis, we consider a Disassembly Line Balancing Problem (DLBP) with fixed number of workstations. We aim to maximize the total value of the recovered parts. We assume that there is a limited supply for the products to be disassembled. Different components can be obtained by disassembling different units of the product. Our aim is to assign the tasks to the workstations of the disassembly line so as to maximize the total value of the recovered parts. We present several upper and one lower bounding p...
Assembly line balancing with multi-manned tasks
Esin, Ceyhan Erdem; Kırca, Ömer; Department of Industrial Engineering (2007)
In this thesis, we define a new problem area for assembly lines. In the literature, there are various studies on assembly line balancing, but none of them consider multi-manned tasks, task to which at least two operators have to be assigned. Two mathematical models and one constraint programming model are developed for both Type-I and Type-II ALB problems. The objective of Type-I problem is to minimize the number of stations whereas the objective of Type-II problem is to minimize the cycle time. In addition...
Optimal pricing and production decisions in reusable container systems
Atamer, Büşra; Bakal, İsmail Serdar; Department of Industrial Engineering (2010)
In this study, we focus on pricing and production decisions in reusable container systems with stochastic demand. We consider a producer that sells a single product to the customers in reusable containers with two supply options: (i) brand-new containers, (ii) returned containers from customers. Customers purchasing the products may return the containers to the producer to receive a deposit price. The return quantity depends on both customer demand and the deposit price determined by the producer. Hence, th...
Material flow cost versus congestion in dynamic distributed facility layout problem
Özen, Aykut; Özdemirel, Nur Evin; Department of Industrial Engineering (2008)
In this thesis, we study both dynamic and distributed facility layout problems, where the demand for product mix changes over time. We propose a new simulated annealing algorithm, SALAB, for the dynamic facility layout problem. Four variants of SALAB find the best known solution for 20 of the 48 benchmark problems from the literature, improving upon the best known solutions of 18 problems. We modify SALAB to obtain DSALAB, solving the dynamic distributed facility layout problem with the objective of minimiz...
The budget constrained discrete time/cost trade-off problem in project networks
Değirmenci, Güvenç; Azizoğlu, Meral; Department of Industrial Engineering (2008)
The time/cost trade-off models in project management aim to compress the project completion time by accelerating the activity durations at an expense of additional resources. The budget problem in discrete time/cost trade-off scheduling selects the time/cost mode -among the discrete set of specified modes- for each activity so as to minimize the project completion time without exceeding the available budget. There may be alternative modes that solve the budget problem optimally, however each solution may ha...
Citation Formats
T. Ertem, “Demand driven disassembly planning,” M.S. - Master of Science, Middle East Technical University, 2007.