Computational analysis of advanced composite armor systems

Download
2007
Başaran, Mustafa Bülent
Achieving light weight armor design has become an important engineering challenge in the last three decades. As weapons becoming highly sophisticated, so does the ammunition, potential targets have to be well protected against such threats. In order to provide mobility, light and effective armor protection materials should be used. In this thesis, numerical simulation of the silicon carbide armor backed by KevlarTM composite and orthogonally impacted by 7.62mm armor piercing (AP) projectile at an initial velocity of 850 m/s is analyzed by using AUTODYN hydrocode. As a first step, ceramic material behavior under impact conditions is validated numerically by comparing the numerical simulation result with the test result which is obtained from the literature. Then, different numerical simulations are performed by changing the backing material thickness, i.e. 2, 4, 6 and 8mm, while the thickness of the ceramic is held constant, i.e. 8mm. At the end of the simulations, optimum ceramic/composite thickness ratio is sought. The results of the simulations showed that for the backing thickness values of 4, 6 and 8mm, the projectile could not perforate the armor system. On the contrary, the projectile could penetrate and perforate the armor system for the backing thickness value of 2mm and it has still some residual velocity. From these results, it is inferred that the optimum ceramic/composite thickness ratio is equal to about 2 for the silicon carbide and kevlar configuration.

Suggestions

Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions
ÇELİK, YAHYA HIŞMAN; Demir, Mehmet Emin; KILIÇKAP, EROL; Kalkanlı, Ali (Springer Science and Business Media LLC, 2020-01-01)
Metal matrix composites (MMCs) with their splendid mechanical properties have been specifically designed for use in fields such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefficient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produ...
Numerical and experimental investigation of perforation of st-37 steel plates by oblique impact
Öztürk, Gökhan; Yıldırım, Raif Orhan; Department of Mechanical Engineering (2010)
In this thesis, it is aimed to determine the ballistic limit thicknesses of ST-37 steel plates under oblique impact of bullets having hard steel core (DIN 100Cr6 at 61-62 HRc) by using both experimental and numerical methods. In experimental part, angles of attack of the bullets are changed from 0 to 70 degrees by 10 degrees increments. Bullet velocities are measured for each shot just before the impact and they are found to be between 790-830 m/s. The minimum plate thickness that is not perforated and the ...
Analysis and design for aluminum forging process
Öztürk, Hüseyin; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2008)
Aluminum forging products has been increasingly used in automotive and aerospace industry due to their lightness and strength. In this study, aluminum forging processes of a particular industrial part for the two different alloys (Al 7075 and Al 6061) have been analyzed. The forging part, forging process and the required dies have been designed according to the aluminum forging design parameters. The proposed process has been simulated by using the Finite Volume Method. In the simulations, analysis of the p...
Development of postprocessor, simulation and verification software for a five-axis CNC milling machine
Cengiz, Ender; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2005)
Five-axis CNC milling machine tools bring great facility to produce complex workpieces with increased dimensional accuracy and better surface quality in shorter machining times. However, kinematics of five-axis machine tools has a complex form which makes it difficult to operate these machine tools properly. The difficulty arises from the complexity of NC-Code generation and tool path verification. Collision of machine tool or setup components with each other is a severe problem in five-axis machining opera...
An investigation on dynamic contact parameters in machining center spindle tool assemblies
Özşahin, Orkun; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2008)
In machining centers, with the increasing trends in high precision machining, chatter has become an important problem which results in poor surface finish and low material removal rate. Chatter can be avoided with stability diagrams which provide the stable regions in the machining process for the depth of cut and spindle speed combinations. In order to obtain stability diagrams, tool point frequency response function (FRF) of the system should be obtained. Throughout this study, contact parameters which ar...
Citation Formats
M. B. Başaran, “Computational analysis of advanced composite armor systems,” M.S. - Master of Science, Middle East Technical University, 2007.