Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions

2020-01-01
ÇELİK, YAHYA HIŞMAN
Demir, Mehmet Emin
KILIÇKAP, EROL
Kalkanlı, Ali
Metal matrix composites (MMCs) with their splendid mechanical properties have been specifically designed for use in fields such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefficient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produced by squeeze casting technique. Some of the composites were aged by heat treatment. Hardness values of aged and non- aged composites were compared. In addition, abrasive wear behaviors of these composites were investigated on pin-on-disk device, depending on the load (7, 12 and 17 N), the sliding speed (0.2, 0.3 and 0.4 m/s) and the sliding distance (700, 1000 and 1300 m). Worn surfaces were also analyzed by scanning electron microscopy (SEM). As a result of the analyses, it was determined that both the hardness values and the wear resistance were higher in the composites subjected to aging treatment. Furthermore, it was observed that the increase in the applied load led up to the weight loss. The increase in the sliding distance increased both friction coefficient and weight loss. The increase in sliding speed also made way for the friction coefficient but ensured less weight loss. When SEM images were examined, it was ascertained that deformation and tribo-surface formation had a significant effect on weight losses.
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING

Suggestions

Computerized test procedure for industrial radiographic examination of metallic welded joints
Güneş, E. Evren; Doyum, Bülent; Department of Mechanical Engineering (2004)
Radiography is an extensively used NDT method, especially in nuclear, aerospace and automotive industries where optimal designs call for greater reliability. The rules corresponding to industrial radiography are defined in a system of radiographic standards. The standards related to the radiographic testing of metallic welded joints had been harmonised in all over the Europe and at the end in 1997, the standard "EN 1435" was established and published. Since then, this standard has become the most widely use...
Analysis of heat treatment effect on springback in v-bending
Sarıkaya, Onur Turgay; Darendeliler, Haluk; Department of Mechanical Engineering (2008)
Aluminum based alloys have wide area of usage in automotive and defense industry and bending processes are frequently applied during production. One of the most important design criteria of bending processes is springback, which can be basically defined as elastic recovery of the part during unloading. To overcome this problem, heat treatment is generally applied to the workpiece material to refine tensile properties. In this study, the effect of heat treatment on springback characteristics of aluminum stud...
Analysis and design for aluminum forging process
Öztürk, Hüseyin; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2008)
Aluminum forging products has been increasingly used in automotive and aerospace industry due to their lightness and strength. In this study, aluminum forging processes of a particular industrial part for the two different alloys (Al 7075 and Al 6061) have been analyzed. The forging part, forging process and the required dies have been designed according to the aluminum forging design parameters. The proposed process has been simulated by using the Finite Volume Method. In the simulations, analysis of the p...
Development of a multigrid accelerated euler solver on adaptively refined two- and three-dimensional cartesian grids
Çakmak, Mehtap; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Cartesian grids offer a valuable option to simulate aerodynamic flows around complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore, an adaptively-refined Cartesian grid generator and Euler solver are developed. For the mesh generation part of the algorithm, dynamic data structures are used to determine connectivity information between cells and uniform mesh is created in the domain. Marching squares and cubes algorithms are used to form interfaces of cut and split cells. Geome...
Design and analysis of fixturing in assembly of sheet metal components of helicopters
Bayar, Fatih Mehmet; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2007)
Assembling of the compliant parts used in aviation industry is a challenging process. Assembly fixtures are quite important tools in this effort and widely used in industry. In fixturing of easily deformable sheet metal parts, besides restraining the rigid body motion of the parts, the possible deformations that may occur during the assembly process and the spring-back effect on the final product need to be taken in to consideration. In order to guarantee a successful assembling, in other words, to obtain t...
Citation Formats
Y. H. ÇELİK, M. E. Demir, E. KILIÇKAP, and A. Kalkanlı, “Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions,” JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45859.