Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A numerical study on the dynamic behaviour of gravity and cantilever retaining walls with granular backfill
Download
index.pdf
Date
2007
Author
Yıldız, Ersan
Metadata
Show full item record
Item Usage Stats
209
views
158
downloads
Cite This
Dynamic behaviour of gravity and cantilever retaining walls is investigated by finite element method, incorporating the nonlinear elasto-plastic material properties of soil and seperation of the wall and backfill. Two dimensional finite element models are developed employing the finite element software ANSYS. The wall is modelled to rest on a soil layer allowing translational and rotational movements of the wall. Soil-wall systems are subjected to harmonic and real earthquake motions with different magnitude and frequency characteristics at the base. The maximum lateral force and its application point durinG dynamic loading are determined for each case. It is observed that the frequency content of the base motion has a significant influence on the dynamic lateral soil pressures and the lateral forces considerably increase as the base motion frequency approaches the fundamental frequency of the soil layer. The maximum lateral thrusts calculated by finite element analyses are generally found to be greater than those suggested by Mononobe-Okabe method and experimental findings. Nevertheless, the locations of the application point obtained by finite element method are found to be in good agreement with the results of experimental studies.
Subject Keywords
Seismic earth pressure.
URI
http://etd.lib.metu.edu.tr/upload/2/12608145/index.pdf
https://hdl.handle.net/11511/16850
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A Novel Two-Way Finite-Element Parabolic Equation Groundwave Propagation Tool: Tests With Canonical Structures and Calibration
Apaydin, Gokhan; Ozgun, Ozlem; Kuzuoğlu, Mustafa; Sevgi, Levent (Institute of Electrical and Electronics Engineers (IEEE), 2011-08-01)
A novel two-way finite-element parabolic equation (PE) (2W-FEMPE) propagation model which handles both forward and backward scattering effects of the groundwave propagation above the Earth's surface over irregular terrain paths through inhomogeneous atmosphere is introduced. A Matlab-based propagation tool for 2W-FEMPE is developed and tested against mathematical exact and asymptotic solutions as well as the recently introduced two-way split-step PE model through a canonical validation, verification, and ca...
A LINEAR MATHEMATICAL-MODEL FOR THE SEISMIC INPLANE BEHAVIOR OF BRICK MASONRY WALLS .1. THEORETICAL CONSIDERATIONS
Mengi, Yalçın; Sucuoğlu, Haluk; McNiven, Hugh (Wiley, 1984-01-01)
In this study two mathematical models are presented for the linear dynamic behaviour of masonry walls. The study is completed in three stages: experimental observations, selection of a mathematical model and the determination of model parameters through optimization analysis. In the present paper (Part 1) the theoretical analysis used in the development of the mathematical models is presented. Part 2 is devoted to the optimization analysis. Evaluation of the experimental data, which is described in detail ...
A numerical study on response factors for steel wall-frame systems
Arslan, Hakan; Topkaya, Cem (Wiley, 2010-11-01)
A numerical investigation was undertaken to evaluate the response of dual structural systems that consisting of steel plate shear walls and moment-resisting frames. The primary objective of the study was to investigate the influence of elastic base shear distribution between the wall and the frame on the global system response. A total of 10 walls and 30 wall frame systems, ranging from 3 to 15 stories, were selected for numerical assessment. These systems represent cases in which the elastic base shear res...
Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey
Akyürek, Sevda Zuhal; Riggs, George A.; ŞENSOY ŞORMAN, AYNUR (Informa UK Limited, 2010-01-01)
Snow-covered area depletion curves represent a key input for snow run-off melting models, e.g. the snowmelt run-off model (SRM). SRM is a degree-day-based model for daily run-off simulations and forecasts in mountainous areas in which snowmelt is the major run-off contributor. Satellite images and aerial photographs are valuable sources for retrieving snow-covered area. The accuracy of snow cover mapping studies in the optical wavebands is highly dependent upon the algorithm's ability to detect clouds. On v...
A Numerical Simulation of non-uniform Magnetic Field Effect on Ferrofluid Flow in a Half-Annulus Enclosure with Sinusoidal Hot Wall
Oglakkaya, F. S.; Bozkaya, Canan (2016-09-25)
In this study, the problem of two-dimensional, laminar ferrofluid flow in a semi-annulus enclosure with sinusoidal hot wall is investigated numerically by using the dual reciprocity boundary element method. The flow is under the influence of a nodal magnetic source placed below the mid of the sinusoidal inner wall. The equations governing the present problem are obtained under the principles of ferrohydrodynamics and magnetohydrodynamics. The numerical computations are performed for various values of Raylei...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Yıldız, “A numerical study on the dynamic behaviour of gravity and cantilever retaining walls with granular backfill,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.