Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Aerothermodynamic analysis and design of rolling piston engine
Download
index.pdf
Date
2007
Author
Aran, Gökhan
Metadata
Show full item record
Item Usage Stats
277
views
103
downloads
Cite This
A rolling piston engine, operating according to a novel thermodynamic cycle is designed. Thermodynamic and structural analysis of this novel engine is carried out and thermodynamic and structural variables of the engine were calculated. The losses in the engine, friction and leakage were calculated and their effects on the engine were demonstrated.
Subject Keywords
Motor Vehicles.
,
Aeronautics.
,
Astronautics.
URI
http://etd.lib.metu.edu.tr/upload/12608449/index.pdf
https://hdl.handle.net/11511/16897
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Thermodynamic and structural design and analysis of a novel turbo rotary engine
Ercan, Taylan; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
A novel turbo rotary engine, operating according to a novel thermodynamic cycle, having an efficient compression phase, a limited temperature combustion phase followed by a long power extraction phase is designed. Thermodynamic and structural design and analysis of this novel engine is carried out and two prototypes are manufactured according to these analysis. High performance figures such as torque, power and low specific fuel consumption are calculated. Also the component tests of the manufactured protot...
Path optimization of flapping airfoils based on unsteady viscous flow solutions
Kaya, Mustafa; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2008)
The flapping path of a single airfoil and dual airfoils in a biplane configuration is optimized for maximum thrust and/or propulsive efficiency. Unsteady, low speed viscous flows are computed using a Navier-Stokes solver in a parallel computing environment. A gradient based algorithm and Response Surface Methodology (RSM) are employed for optimization. The evaluation of gradient vector components and the design of experiments for RSM, which require unsteady solutions, are also carried out in parallel. Paral...
DYNAMIC ANALYSIS OF GEARED ROTORS BY FINITE-ELEMENTS
KAHRAMAN, A; Özgüven, Hasan Nevzat; HOUSER, DR; ZAKRAJSEK, JJ (1992-09-01)
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by c...
Design optimization of variable frequency driven three-phase induction motors
Ertan, B; Leblebicioğlu, Mehmet Kemal; Simsir, B; Hamarat, S; Cekic, A; Pirgaip, M (1998-01-01)
An approach to optimize the design of three-phase induction motors for a wide speed range drive is considered. Two operating points in the speed range are taken into consideration. The problem is handled as a constrained optimization problem. An accurate model for the motor in terms of its dimensions has been developed which predicts the motor performance based on about 60 parameters of motor geometry.
Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine
OKUR, MELİH; Akmandor, Ibrahim Sinan (Elsevier BV, 2011-05-01)
Hinged rolling piston compressor of a new thermodynamic cycle Pars engine promises high performance figures such as single stage high compression levels and higher volume flow discharge with competitively low input power and torque. The pumping characteristic of the present engine compressor unit has been increased by the implementation of a spring less vane configuration. The reciprocating vane which is usually operated by spring compression in air conditioning and refrigeration unit has been replaced by a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Aran, “Aerothermodynamic analysis and design of rolling piston engine,” M.S. - Master of Science, Middle East Technical University, 2007.