RF coil system design for MRI applications inhomogeneous main magnetic field

Yılmaz, Ayhan Ozan
In this study, RF coil geometries are designed for MRI applications using inhomogeneous main magnetic fields. The current density distributions that can produce the desired RF magnetic field characteristics are obtained on predefined cubic, cylindrical and planar surfaces and Tikhonov, CGLS, TSVD and Rutisbauer regularization methods are applied to match the desired and generated magnetic fields. The conductor paths, which can produce the current density distribution calculated for each surface selection and regularization technique, are determined using stream functions. The magnetic fields generated by the current distributions are calculated and the error percentages between the desired and generated magnetic fields are found. Optimum conductor paths that are going to be produced on cubic, cylindrical and planar surfaces and the required regularization method are determined on the basis of error percentages and realizability of the conductor paths. The optimum conductor path calculated for the planar coil is realized and in the measurement done by LakeShore 3-Channel Gaussmeter, an average error percentage of 11 is obtained between the theoretical and measured magnetic field. The inductance values of the realized RF coil are measured; the tuning and matching capacitance values are calculated and the frequency characteristics of the system is tested using Electronic Workbench 5.1. The quality factor value of the tested system is found to be 162.5, which corresponds to a bandwidth of 39,2 KHz at 6,387 MHz (operating frequency of METU MRI system). The techniques suggested in this study can be used in order to design and realize RF coils on prede¯ned arbitrary surfaces for inhomogeneous main magnetic fields. In addition, a hand held MRI device can be manufactured which uses a low cost permanent magnet to provide a magnetic field and generates the required RF field with the designed RF coil using the techniques suggested in this study.
Citation Formats
A. O. Yılmaz, “RF coil system design for MRI applications inhomogeneous main magnetic field,” M.S. - Master of Science, Middle East Technical University, 2007.