Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling of ground-borne vibration from underground railway systems
Download
index.pdf
Date
2007
Author
Sarıgöl, Melih
Metadata
Show full item record
Item Usage Stats
196
views
93
downloads
Cite This
Ground-borne vibration from underground rail vehicles is studied analytically. A previously developed model by J.A.Forrest and H.E.M.Hunt is modified to account for different track and vehicle models. The tunnel is modeled as infinite cylindrical shell surrounded by viscoelastic soil. The track is coupled to the tunnel with supports of complex stiffness. The rails, which are modeled as infinite Euler beams, are supported by discrete sleepers with regular spacing, and railpads with complex stiffness. A modified hysteretic damping model for moving loads is applied to soil. Linearized Hertzian contact spring is included between the wheel and the rail. The solution is obtained in frequency domain using random process theory. Effects of improvements in the model are graphically presented to enable comparison with the previously developed model and measurements from literature.
Subject Keywords
Elevated Railways and Subways.
URI
http://etd.lib.metu.edu.tr/upload/12608723/index.pdf
https://hdl.handle.net/11511/17050
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Utilization of neural networks for simulation of vehicle induced flow in tunnel systems
Koç, Gencer; Albayrak, Kahraman; Sert, Cüneyt; Department of Mechanical Engineering (2012)
Air velocities induced by underground vehicles in complex metro systems are obtained using artificial neural networks. Complex tunnel shaft-systems with any number of tunnels and shafts and with most of the practically possible geometries encountered in underground structures can be simulated with the proposed method. A single neural network, of type feed-forward back propagation, with a single hidden layer is trained for modelling a single tunnel segment. Train and tunnel parameters that have influence on ...
Dynamic simulation and performance optimization of a car with continuously variable transmission
Güvey, Serkan; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2003)
The continuously variable transmission (CVT), which has been in use in some of the vehicles in the market today, presents the possibility of decoupling the engine speed and the vehicle speed. By this way, it is now possible to operate the engine at its maximum efficient or performance point and fix it at that operating point without losing from the vehicle speed. Instead of using gears, which are the main transmission elements of conventional transmission, CVT uses two pulleys and a belt. By changing the pu...
Evaluation of structural analysis methods used for the design of tbm segmental linings
Çimentepe, Ahmet Güray; Caner, Alp; Department of Civil Engineering (2010)
Contrary to the linings of conventionally driven tunnels, the linings of tunnels bored by tunnel boring machines (TBMs) consist of precast concrete segments which are articulated or coupled at the longitudinal and circumferential joints. There are several analytical and numerical structural analysis methods proposed for the design of TBM segmental linings. In this thesis study, different calculation methods including elastic equation method and two dimensional (2D) and three dimensional (3D) beam – spring m...
Utilization of neural networks for simulating vehicle induced air velocity in underground tunnels
Koç, G.; Albayrak, Kahraman; Sert, Cüneyt (2012-12-01)
Air velocities induced by underground vehicles in metro tunnels equipped with ventilation shafts are obtained using artificial neural networks. Complex tunnel shaft-systems with any number of tunnels and shafts and with most of the practically possible geometries encountered in underground structures can be simulated with the proposed method. A single neural network, of type feed-forward back propagation, with a single hidden layer is trained for modeling a single tunnel segment. Train and tunnel parameters...
Prediction of automobile tire cornering force characteristics by finite element modeling and analysis
Tönük, Ergin; Ünlüsoy, Yavuz Samim (2001-05-01)
In this study, a detailed finite element model of a radial automobile tire is constructed for the prediction of cornering force characteristics during the design stage. The nonlinear stress-strain relationship of rubber as well as a linear elastic approximation, reinforcement, large displacements, and frictional ground contact are modeled. Validity of various simplifications is checked. The cornering force characteristics obtained by the finite element tire model are verified on the experimental setup const...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Sarıgöl, “Modeling of ground-borne vibration from underground railway systems,” M.S. - Master of Science, Middle East Technical University, 2007.