Prediction of automobile tire cornering force characteristics by finite element modeling and analysis

In this study, a detailed finite element model of a radial automobile tire is constructed for the prediction of cornering force characteristics during the design stage. The nonlinear stress-strain relationship of rubber as well as a linear elastic approximation, reinforcement, large displacements, and frictional ground contact are modeled. Validity of various simplifications is checked. The cornering force characteristics obtained by the finite element tire model are verified on the experimental setup constructed for this purpose.


Finite element analysis of cornering characteristics of rotating tires
Erşahin, Mehmet Akif; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2003)
A finite element model is developed to obtain the cornering force characteristics for rotating pneumatic tires which combines accuracy together with substantially reduced computational effort. For cord reinforced rubber sections such as the body plies and breaker belts, continuum elements with orthotropic material properties are used to improve solution times. Drastic reductions in computational effort are then obtained by replacing the continuum elements with truss elements which do not require orientation...
Shape optimization of wheeled excavator lower chassis
Özbayramoğlu, Erkal; Söylemez, Eres; Department of Mechanical Engineering (2008)
The aim of this study is to perform the shape optimization of the lower chassis of the wheeled excavator. A computer program is designed to generate parametric Finite Element Analysis (FEA) of the structure by using the commercial program, MSC. Marc-Mentat. The model parameters are generated in the Microsoft Excel platform and the analysis data is collected by the Python based computer codes. The previously developed software Smart Designer [5], which performs the shape optimization of an excavator boom by ...
Investigation of variations in performance properties of asphalt concrete using image-based finite element model
Karakaya, Yalçın; Güler, Murat; Department of Civil Engineering (2022-7-20)
The objective of this study is to evaluate variations in performance properties of asphalt concrete using a two-dimensional image-based finite element model. Two different asphalt mixtures are used in both laboratory tests and in FEM analyses representing different conditions. A flatbed scanner is then used to capture cross-sectional images of the samples and various image processing techniques are applied to prepare the images for FEM. A unique image vectorization method has been developed to transform cro...
Analysis and Design of Passive and Active Interconnected Hydro Pneumatic Suspension Systems in Roll Plane
Sağlam, Ferhat; Ünlüsoy, Yavuz Samim (2015-05-19)
In this study, analysis and design of a half car model in roll plane with passive and active unconnected and interconnected Hydro-Pneumatic (HP) suspension systems are made. An interconnection configuration with a connection between the piston side oil volume and rod side oil volume of the right and left suspensions, respectively, is considered. The performance of the active unconnected HP and interconnected HP suspension systems are compared in terms of ride comfort and handling. Nonlinear mathematical mod...
Unlusoy, Levent; Şahin, Melin; Yaman, Yavuz (2012-07-04)
In this study, the detailed finite element model (FEM) of an unmanned aerial vehicle wing torque box was verified by the experimental modal testing. During the computational studies the free-free boundary conditions were used and the natural frequencies and mode-shapes of the structure were obtained by using the MSC Software. The results were then compared with the experimentally obtained resonance frequencies and mode-shapes. It was observed that the frequencies were in close agreement having an error with...
Citation Formats
E. Tönük and Y. S. Ünlüsoy, “Prediction of automobile tire cornering force characteristics by finite element modeling and analysis,” COMPUTERS & STRUCTURES, pp. 1219–1232, 2001, Accessed: 00, 2020. [Online]. Available: