Development and comparison of autopilot and guidance algorithms for missiles

Download
2007
Evcimen, Çağdaş
In order to have an interception with a target, a missile should be guided with a successful guidance algorithm accompanied with a suitable autopilot structure. In this study, different autopilot and guidance designs for a canard-controlled missile are developed. As a first step, nonlinear missile mathematical model is derived by using the equations of motion with aerodynamic coefficients found by Missile DATCOM program. Autopilot design starts by the linearization of the nonlinear missile model around equilibrium flight conditions. Controllers based on the concepts of optimal control theory results and sliding mode control are designed. In all of the designs, angle of attack command and roll angle command type autopilot structures are used. During the design process, variations in angle of attack, Mach number and altitude can lead to significant performance degradation. This problem is typically solved by applying gain-scheduling methodology according to these parameters. There are different types of guidance methods in the literature. Throughout this study, proportional navigation guidance and its modified forms are selected as a base algorithm in the guidance system design. Other robust forms of guidance methods, such as an optimal guidance approach and sliding mode guidance, are also formed for performance comparison with traditional proportional navigation guidance approach. Finally, a new guidance method, optimal proportional-integral guidance, whose performance is the best among all of the methods included in the thesis against highly maneuvering targets, is introduced.

Suggestions

Modelling and controller design of the gun and turret system for an aircraft
Mert, Ahmet; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2009)
Gun and gun turret systems are the primary units of the weapon systems of an aircraft. They are required to hit targets accurately during operations. That is why a complete, high precision control of weapon systems is required. This function is provided by accurate modeling of the system and the design of a suitable controller. This study presents the modeling of and controller design for the gun and turret system for an aircraft. For the controller design purpose, first the mathematical model of the system...
Modeling, stability analysis and control system design of a small-sized tiltrotor uav
Çakıcı, Ferit; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2009)
Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircrafts that can carry cameras, sensors, communications equipment or other payloads. Tiltrotor UAVs provide a unique platform that fulfills the needs for ever-changing mission requirements by combining the desired features; hovering like a helicopter and reaching high forward speeds like an airplane. In this work, the conceptual design and aerodynamical model of a realizable small-sized Tiltrotor UAV is constructed, the linearized state-...
Design of a slotted waveguide array antenna and its feed system
Top, Can Barış; Hızal, Altunkan; Department of Electrical and Electronics Engineering (2006)
Slotted waveguide array (SWGA) antennas find application in systems which require planarity, low profile, high power handling capabilities such as radars. In this thesis, a planar, low sidelobe, phased array antenna, capable of electronically beam scanning in E-plane is designed, manufactured and measured. In the design, slot characterization is done with HFSS and by measurements, and mutual coupling between slots are calculated analytically. A MATLAB code is developed for the synthesis of the SWGA antenna....
Simulation-based comparison of some gmti techniques
Baktır, Can; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2009)
With the developing radar technology, radars have been started to be used in the airborne platforms due to the need of fast, accurate and reliable information about the enemies. The most important and tactically needed information is the movements in an observation area. The detection of a ground moving target buried in a dense clutter environment from a moving air platform is a very challenging problem even today. The geometry of the operation, the course of the flight and structure of the clutter are the ...
Visual detection and tracking of moving objects
Ergezer, Hamza; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2007)
In this study, primary steps of a visual surveillance system are presented: moving object detection and tracking of these moving objects. Background subtraction has been performed to detect the moving objects in the video, which has been taken from a static camera. Four methods, frame differencing, running (moving) average, eigenbackground subtraction and mixture of Gaussians, have been used in the background subtraction process. After background subtraction, using some additional operations, such as morpho...
Citation Formats
Ç. Evcimen, “Development and comparison of autopilot and guidance algorithms for missiles,” M.S. - Master of Science, Middle East Technical University, 2007.