Modeling, stability analysis and control system design of a small-sized tiltrotor uav

Çakıcı, Ferit
Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircrafts that can carry cameras, sensors, communications equipment or other payloads. Tiltrotor UAVs provide a unique platform that fulfills the needs for ever-changing mission requirements by combining the desired features; hovering like a helicopter and reaching high forward speeds like an airplane. In this work, the conceptual design and aerodynamical model of a realizable small-sized Tiltrotor UAV is constructed, the linearized state-space models are obtained around the trim points for airplane, helicopter and conversion modes, controllers are designed using Linear Quadratic Regulator (LQR) methods and gain-scheduling is employed to obtain a simulation for the whole flight envelope. The ideas for making a real flying model are established according to simulation results.