Noise reduction in time-frequency domain

Kalyoncu, Özden
In this thesis work, time-frequency filtering of nonstationary signals in noise using Wigner-Ville Distribution is investigated. Continuous-time, discrete-time and discrete Wigner Ville Distribution definitions, their relations, and properties are given. Time-Frequency Peak Filtering Method is presented. The effects of different parameters on the performance of the method are investigated, and the results are presented. Time-Varying Wiener Filter is presented. Using simulations it is shown that the performance of the filter is good at SNR levels down to -5 dB. It is proposed and shown that the performance of the filter improves by using Support Vector Machines. The presented time-frequency filtering techniques are applied on test signals and on a real world signal. The results obtained by the two methods and also by classical zero-phase low-pass filtering are compared. It is observed that for low sampling rates Time-Varying Wiener Filter, and for high sampling rates Time-Frequency Peak Filter performs better.


Dense depth map estimation for object segmentation in multi-view video
Çığla, Cevahir; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2007)
In this thesis, novel approaches for dense depth field estimation and object segmentation from mono, stereo and multiple views are presented. In the first stage, a novel graph-theoretic color segmentation algorithm is proposed, in which the popular Normalized Cuts 59H[6] segmentation algorithm is improved with some modifications on its graph structure. Segmentation is obtained by the recursive partitioning of the weighted graph. The simulation results for the comparison of the proposed segmentation scheme w...
Time domain scattering from single and multiple objects
Azizoğlu, Süha Alp; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2008)
The importance of the T-matrix method is well-known when frequency domain scattering problems are of interest. With the relatively recent and wide-spread interest in time domain scattering problems, similar applications of the T-matrix method are expected to be useful in the time domain. In this thesis, the time domain spherical scalar wave functions are introduced, translational addition theorems for the time domain spherical scalar wave functions necessary for the solution of multiple scattering problems ...
Optimum current injection strategy for magnetic resonance electrical impedance tomography
Altunel, Haluk; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2008)
In this thesis, optimum current injection strategy for Magnetic Resonance Electrical Impedance Tomography (MREIT) is studied. Distinguishability measure based on magnetic flux density is defined for MREIT. Limit of distinguishability is analytically derived for an infinitely long cylinder with concentric and eccentric inhomogeneities. When distinguishability limits of MREIT and Electrical Impedance Tomography (EIT) are compared, it is found that MREIT is capable of detecting smaller perturbations than EIT. ...
Radar pulse repetition interval tracking with kalman filter
Avcu, Soner; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
In this thesis, the radar pulse repetition interval (PRI) tracking with Kalman Filter problem is investigated. The most common types of PRIs are constant PRI, step (jittered) PRI, staggered PRI, sinusoidally modulated PRI. This thesis considers the step (this type of PRI agility is called as constant PRI when the jitter on PRI values is eliminated) and staggered PRI cases. Different algorithms have been developed for tracking step and staggered PRIs cases. Some useful simplifications are obtained in the alg...
FPGA implementation of graph cut method for real time stereo matching
Sağlık Özsaraç, Havva; Ünver, Baki Zafer; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2010)
The present graph cut methods cannot be used directly for real time stereo matching applications because of their recursive structure. Graph cut method is modified to change its recursive structure so that making it suitable for real time FPGA (Field Programmable Gate Array) implementation. The modified method is firstly tested by MATLAB on several data sets, and the results are compared with those of previous studies. Although the disparity results of the modified method are not better than other methods’,...
Citation Formats
Ö. Kalyoncu, “Noise reduction in time-frequency domain,” M.S. - Master of Science, Middle East Technical University, 2007.