Joint frequency offset and channel estimation

Download
2008
Avan, Muhammet
In this thesis study, joint frequency offset and channel estimation methods for single-input single-output (SISO) systems are examined. The performance of maximum likelihood estimate of the parameters are studied for different training sequences. Conventionally training sequences are designed solely for the channel estimation purpose. We present a numerical comparison of different training sequences for the joint estimation problem. The performance comparisons are made in terms of mean square estimation error (MSE) versus SNR and MSE versus the total training energy metrics. A novel estimation scheme using complementary sequences have been proposed and compared with existing schemes. The proposed scheme presents a lower estimation error than the others in almost all numerical simulations. The thesis also includes an extension for the joint channel-frequency offset estimation problem to the multi-input multi-output systems and a brief discussion for multiple frequency offset case is also given.

Suggestions

Parameter extraction and image enhancement for catadioptric omnidirectional cameras
Baştanlar, Yalın; Çetin, Yasemin; Department of Information Systems (2005)
In this thesis, catadioptric omnidirectional imaging systems are analyzed in detail. Omnidirectional image (ODI) formation characteristics of different camera-mirror configurations are examined and geometrical relations for panoramic and perspective image generation with common mirror types are summarized. A method is developed to determine the unknown parameters of a hyperboloidal-mirrored system using the world coordinates of a set of points and their corresponding image points on the ODI. A linear relati...
Multipath Characteristics of Frequency Diverse Arrays Over a Ground Plane
Cetintepe, Cagri; Demir, Şimşek (Institute of Electrical and Electronics Engineers (IEEE), 2014-07-01)
This paper presents a theoretical framework for an analytical investigation of multipath characteristics of frequency diverse arrays (FDAs), a task which is attempted for the first time in the open literature. In particular, transmitted field expressions are formulated for an FDA over a perfectly conducting ground plane first in a general analytical form, and these expressions are later simplified under reasonable assumptions. Developed formulation is then applied to a uniform, linear, continuous-wave opera...
Tunable frequency microstrip antennas by rf-mems technology
Erdil, Emre; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2005)
This thesis presents the design, fabrication, and measurement of tunable frequency microstrip antennas using RF MEMS (Microelectromechanical Systems) technology. The integration of RF MEMS components with radiators enable to implement tunable systems due to the adjustable characteristics of RF MEMS components. In the frame of this thesis, different types of structures have been investigated and designed. The first structure consists of a microstrip patch antenna which is loaded with a microstrip stub whose ...
Design and realization of broadband instantaneous frequency discriminator
Pamuk, Gökhan; Yıldırım, Nevzat; Department of Electrical and Electronics Engineering (2010)
n this thesis, RF sections of a multi tier instantaneous frequency measurement (IFM) receiver which can operate in 2 – 18 GHz frequency band is designed, simulated and partially realized. The designed structure uses one coarse tier, three medium tiers and one fine tier for frequency discrimination. A novel reflective phase shifting technique is developed which enables the design of very wideband phase shifters using stepped cascaded transmission lines. Compared to the classical phase shifters using coupled ...
Joint spatial and temporal channel-shortening techniques for frequency selective fading MIMO channels
Toker, Canan; Chambers, JA; Baykal, Buyurman (2005-02-01)
It is well understood that the maximum likelihood estimator is a powerful equalisation technique for frequency selective fading channels, and in particular for MIMO systems. The complexity of this estimator, however, grows exponentially with the number of users and multipath taps, hence limiting the use of this algorithm in MIMO systems. In the paper, the authors propose a joint spatial and temporal channel-shortening filter as a pre-processor to reduce significantly the complexity of a maximum likelihood e...
Citation Formats
M. Avan, “Joint frequency offset and channel estimation,” M.S. - Master of Science, Middle East Technical University, 2008.