Time domain scattering from single and multiple objects

Download
2008
Azizoğlu, Süha Alp
The importance of the T-matrix method is well-known when frequency domain scattering problems are of interest. With the relatively recent and wide-spread interest in time domain scattering problems, similar applications of the T-matrix method are expected to be useful in the time domain. In this thesis, the time domain spherical scalar wave functions are introduced, translational addition theorems for the time domain spherical scalar wave functions necessary for the solution of multiple scattering problems are given, and the formulation of time domain scattering of scalar waves by two spheres and by two scatterers of arbitrary shape is presented. The whole analysis is performed in the time domain requiring no inverse Fourier integrals to be evaluated. Scattering examples are studied in order to check the numerical accuracy, and demonstrate the utility of the expressions.

Suggestions

Spherical wave expansion of the time-domain free-space Dyadic Green's function
Azizoglu, SA; Koç, Seyit Sencer; Buyukdura, OM (Institute of Electrical and Electronics Engineers (IEEE), 2004-03-01)
The importance of expanding Green's functions, particularly free-space Green's functions in terms of orthogonal wave functions is practically self-evident when frequency domain scattering problems are of interest. With the relatively recent and widespread interest in time-domain scattering problems, similar expansions of Green's functions are expected to be useful in the time-domain. In this paper, an expression, expanded in terms of orthogonal spherical vector wave functions, for the time-domain free-space...
Tracker-aware detection : a theoretical and an experimental study
Aslan, Murat Şamil; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2009)
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance pred...
Optimum current injection strategy for magnetic resonance electrical impedance tomography
Altunel, Haluk; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2008)
In this thesis, optimum current injection strategy for Magnetic Resonance Electrical Impedance Tomography (MREIT) is studied. Distinguishability measure based on magnetic flux density is defined for MREIT. Limit of distinguishability is analytically derived for an infinitely long cylinder with concentric and eccentric inhomogeneities. When distinguishability limits of MREIT and Electrical Impedance Tomography (EIT) are compared, it is found that MREIT is capable of detecting smaller perturbations than EIT. ...
Noise reduction in time-frequency domain
Kalyoncu, Özden; SÜnver, Zafer; Department of Electrical and Electronics Engineering (2007)
In this thesis work, time-frequency filtering of nonstationary signals in noise using Wigner-Ville Distribution is investigated. Continuous-time, discrete-time and discrete Wigner Ville Distribution definitions, their relations, and properties are given. Time-Frequency Peak Filtering Method is presented. The effects of different parameters on the performance of the method are investigated, and the results are presented. Time-Varying Wiener Filter is presented. Using simulations it is shown that the performa...
Investigation of music algorithm based and wd-pca method based electromagnetic target classification techniques for their noise performances
Ergin, Emre; Sayan, Gönül; Department of Electrical and Electronics Engineering (2009)
Multiple Signal Classification (MUSIC) Algorithm based and Wigner Distribution-Principal Component Analysis (WD-PCA) based classification techniques are very recently suggested resonance region approaches for electromagnetic target classification. In this thesis, performances of these two techniques will be compared concerning their robustness for noise and their capacity to handle large number of candidate targets. In this context, classifier design simulations will be demonstrated for target libraries con...
Citation Formats
S. A. Azizoğlu, “Time domain scattering from single and multiple objects,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.