Manufacturing and structural analysis of a lightweight sandwich composite UAV wing

Turgut, Tahir
This thesis work deals with manufacturing a lightweight composite unmanned aerial vehicle (UAV) wing, material characterization of the composites used in the UAV wing, and preliminary structural analysis of the UAV wing. Manufacturing is performed at the composite laboratory founded in the Department of Aerospace Engineering, and with hand lay-up and vacuum bagging method at room temperature the wing is produced. This study encloses the detailed manufacturing process of the UAV wing from the mold manufacturing up to the final wing configuration supported with sketches and pictures. Structural analysis of the composite wing performed in this study is based on the material properties determined by coupon tests and micromechanics approaches. Contrary to the metallic materials, the actual material properties of composites are generally not available in the material handbooks, because the elastic properties of composite materials are dependent on the manufacturing process. In this study, the mechanical properties, i.e. Young’s Modulus, are determined utilizing three different methods. Firstly, longitudinal tensile testing of the coupon specimens is performed to obtain the elastic properties. Secondly, mechanics of materials approach is used to determine the elastic properties. Additionally, an approximate method, that can be used in a preliminary study, is employed. The elastic properties determined by the tests and other approaches are compared to each other. One of the aims of this study is to establish an equivalent material model based on test and micromechanics approach, and use the equivalent model in the structural analysis by finite element method. To achieve this, composite structure of the wing is modeled in detail with full composite material descriptions of the surfaces of the wing structure, and comparisons are made with the results obtained by utilizing equivalent elastic constants. The analyses revealed that all three approaches have consistent, and close results; especially in terms of deflections and natural frequencies. Stress values obtained are also comparable as well. For a case study on level flight conditions, spanwise wing loading distribution is obtained using a program of ESDU, and the wing is analyzed with the distributed loading. Reasonable results are obtained, and the results compared with the tip loading case. Another issue dealt in this study is analyzing the front spar of the wing separately. The analysis of the front spar is performed using transformed section method and finite element analysis. In the results, it is found that both methods calculates the deflections very close to each other. Close stress results are found when solid elements are used in the finite element analysis, whereas, the results were deviating when shell elements are used in the analysis.
Citation Formats
T. Turgut, “Manufacturing and structural analysis of a lightweight sandwich composite UAV wing,” M.S. - Master of Science, Middle East Technical University, 2007.