Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
High angle attack maneuvering and stabilization control of aircraft
Download
index.pdf
Date
2007
Author
Ateşoğlu, Özgür
Metadata
Show full item record
Item Usage Stats
336
views
149
downloads
Cite This
In this study, the implementation of modern control techniques, that can be used both for the stable recovery of the aircraft from the undesired high angle of attack flight state (stall) and the agile maneuvering of the aircraft in various air combat or defense missions, are performed. In order to accomplish this task, the thrust vectoring control (TVC) actuation is blended with the conventional aerodynamic controls. The controller design is based on the nonlinear dynamic inversion (NDI) control methodologies and the stability and robustness analyses are done by using robust performance (RP) analysis techniques. The control architecture is designed to serve both for the recovery from the undesired stall condition (the stabilization controller) and to perform desired agile maneuvering (the attitude controller). The detailed modeling of the aircraft dynamics, aerodynamics, engines and thrust vectoring paddles, as well as the flight environment of the aircraft and the on-board sensors is performed. Within the control loop the human pilot model is included and the design of a fly-by-wire controller is also investigated. The performance of the designed stabilization and attitude controllers are simulated using the custom built 6 DoF aircraft flight simulation tool. As for the stabilization controller, a forced deep-stall flight condition is generated and the aircraft is recovered to stable and pilot controllable flight regimes from that undesired flight state. The performance of the attitude controller is investigated under various high angle of attack agile maneuvering conditions. Finally, the performances of the proposed controller schemes are discussed and the conclusions are made.
Subject Keywords
Automatic control.
,
Automatic machinery.
,
Airplanes
URI
http://etd.lib.metu.edu.tr/upload/12608575/index.pdf
https://hdl.handle.net/11511/17147
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
High-alpha flight maneuverability enhancement of a fighter aircraft using thrust-vectoring control
Atesoglu, Oezguer; Oezgoeren, M. Kemal (American Institute of Aeronautics and Astronautics (AIAA), 2007-09-01)
This study focuses on high-alpha flight maneuverability enhancement of a fighter-bomber aircraft for air combat superiority using thrust-vectoring control. Two basic air superiority maneuvers are studied as test cases, which are the Cobra maneuver with longitudinal motion and the Herbst maneuver with both longitudinal and lateral motions. The necessary mathematical models are built to describe the nonlinear 6-degree-of-freedom flight dynamics, the nonlinear aerodynamics, the engine, and the thrust-vectoring...
An automatic geometry and mesh generation tool for helicopter rotor aerodynamic design and analysis
Uzun, Halit Eldem; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2021-9-08)
Helicopter rotors in various flight regimes constitute a fairly complex wing geometry and exhibit motion affected by the rotor wake with strong tip vortices. As a result, rotor motion creates highly three-dimensional flow patterns, and unlike fixed wings, flow around each rotor blade interacts with each other. Due to these complexities, the rotor flow analysis can be very challenging for CFD solvers. The challenge starts with very high-quality requirements on the computational mesh around the rotor geometry...
Structured H-Infinity controller design and analysis for highly maneuverable jet aircraft
Özkan, Salih Volkan; Tekinalp, Ozan; Department of Aerospace Engineering (2022-2-10)
Robust control technique is utilized to develop flight control laws for highly maneuverable aircraft. A structured H-Infinity controller is used to optimize the gains of the proposed control algorithm. For this purpose systune algorithm available in Matlab is employed to successfully obtain the controller gains satisfying selected design requirements. Designed control laws are evaluated according to these requirements and validation of the methodology is presented.
Hovering Control of a Tilt-Wing UAV
Çakır, Hasan; Kurtuluş, Dilek Funda (2019-09-20)
In this study, the design and analysis of hovering controller of an UAV which is capable of doing vertical take-off and landing using the fixed six rotors placed on the tilt-wing and tilt-tail will be explained. The aircraft will have four rotors on the wing and two rotors on the tail. The main wing and horizontal tail will be capable of 90° tilting. Whole flight is separated into three flight modes, which are VTOL, Transition and Forward Flight, to have a robust control on aircraft. Only hover control of t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Ateşoğlu, “High angle attack maneuvering and stabilization control of aircraft,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.