Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simultaneous localization and mapping for a mobile robot operating in outdoor environments
Download
index.pdf
Date
2007
Author
Sezginalp, Emre
Metadata
Show full item record
Item Usage Stats
210
views
136
downloads
Cite This
In this thesis, a method to the solution of autonomous navigation problem of a robot working in an outdoor application is sought. The robot will operate in unknown terrain where there is no a priori map present, and the robot must localize itself while simultaneously mapping the environment. This is known as Simultaneous Localization and Mapping (SLAM) problem in the literature. The SLAM problem is attempted to be solved by using the correlation between range data acquired at different poses of the robot. A robot operating outdoors will traverse unstructured terrain, therefore for localization, pitch, yaw and roll angles must also be taken into account along with the (x,y,z) coordinates of the robot. The Iterative Closest Points (ICP) algorithm is used to find this transformation between different poses of the robot and find its location. In order to collect the range data, a system composing of a laser range finder and an angular positioning system is used. During localization and mapping, odometry data is fused with range data.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/2/12609191/index.pdf
https://hdl.handle.net/11511/17346
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Prediction of slip in cable-drum systems using structured neural networks
KILIÇ, Ergin; Dölen, Melik (SAGE Publications, 2014-02-01)
This study focuses on the slip prediction in a cable-drum system using artificial neural networks for the prospect of developing linear motion sensing scheme for such mechanisms. Both feed-forward and recurrent-type artificial neural network architectures are considered to capture the slip dynamics of cable-drum mechanisms. In the article, the network development is presented in a progressive (step-by-step) fashion for the purpose of not only making the design process transparent to the readers but also hig...
Global urban localization of an outdoor mobile robot using satellite images
Doğruer, Can Ulaş; Koku, Ahmet Buğra; Department of Mechanical Engineering (2009)
In this dissertation, the mapping of outdoor environments and localization of a mobile robot in that setting is considered. It is well known that in the absence of a map or precise pose estimates, localization and mapping is a coupled problem. However, in this dissertation this problem is decoupled in to two disjoint steps; mapping and localization on the acquired map. First the images of the outdoor environment is downloaded from a website such as Google Earth and then these images are processed by utilizi...
Vibration-based damage identification in beam-like composite laminates by using artificial neural networks
Şahin, Melin (SAGE Publications, 2003-01-01)
This paper investigates the effectiveness of the combination of global (changes in natural frequencies) and local (curvature mode shapes) vibration-based analysis data as input for artificial neural networks (ANNs) for location and severity prediction of damage in fibre-reinforced plastic laminates. A finite element analysis tool has been used to obtain the dynamic characteristics of intact and damaged cantilever composite beams for the first three natural modes. Different damage scenarios have been introdu...
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
Computer aided design and simulation of year around air conditioning-comfort application
Ertuğ, Müzeyyen Oya; Oskay, Rüknettin; Department of Mechanical Engineering (2009)
The aim of this thesis is to develop a computer program to design and simulate air conditioning-comfort application of a selected building, for a year period, on an hourly basis. In order to carry out this study, a computer program named “AHUSIM.m”, is prepared with Matlab computing language. The design and simulation procedure starts with preparing the inputs like indoor, outdoor design states, zone cooling and heating loads, along with the general data for conditioning-comfort equipment. The program, in l...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Sezginalp, “Simultaneous localization and mapping for a mobile robot operating in outdoor environments,” M.S. - Master of Science, Middle East Technical University, 2007.