The electrical characteristics of antennas in their operational environment

Download
2007
Afacan, Gönenç
This thesis investigates the variations of electrical properties of linear antennas mounted on certain platforms, depending on the physical properties of that platform. In this respect, related basic antenna simulations, electromagnetic simulations from primitive to complex models of airframes, and scale model measurements were used. Firstly, electrical properties of monopoles at known environment were examined and basic analyses were performed via an electromagnetic simulation tool, named CST Microwave Studio®. In addition, important aspects of simulation tool were investigated. Then, an F-4 aircraft model was used to observe the electrical characteristics of antennas mounted on it. Using 3D model of F-4 aircraft, realistic antenna placement points were assigned and monopoles were attached to those points. Alternatively, a simplified F-4 model was also used and for two different models, identical simulations were done, followed by accuracy and performance analysis between the results obtained from simplified and exact models. As the outcome of these simulations, certain parameters like impedance, antenna-to-antenna coupling and radiation pattern values were examined. Additionally, change in antennas’ electrical characteristics due to their position over the airframe was investigated. In addition, a 1:10 down-scaled and copper-plated F-4 aircraft model was obtained and equipped with identical antennas. By using the measurements done on this scale model, antenna-to-antenna coupling results of MWS® were verified by measurements. Finally, advantages and disadvantages of using electromagnetic simulation tools and scale model measurements for such antenna studies were discussed.

Suggestions

Performance evaluation of magnetic flux density based magnetic resonance electrical impedance tomography reconstruction algorithms
Eker, Gökhan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2009)
Magnetic Resonance Electrical Impedance Tomography (MREIT) reconstructs images of electrical conductivity distribution based on magnetic flux density (B) measurements. Magnetic flux density is generated by an externally applied current on the object and measured by a Magnetic Resonance Imaging (MRI) scanner. With the measured data and peripheral voltage measurements, the conductivity distribution of the object can be reconstructed. There are two types of reconstruction algorithms. First type uses current de...
S-band hybrid 4 bit phase shifter using cots components
Erkek, Eser; Demir, Şimşek; Department of Electrical and Electronics Engineering (2009)
Microwave and millimeter-wave phase shifters are one of the most important structures of the antenna series that are used in communication and radar applications. They are used to form the main beam of the electronically scanned phase array antennas and generate the appropriate phase values for the antenna elements design while providing electronic beam steering. In this thesis, S-band hybrid 4 bit phase shifter of 22.5º phase resolution is designed, simulated, fabricated and measured. Bits are separately d...
Analysis and design of passive microwave and optical devices using the multimode interference technique
Sunay, Ahmet Sertaç; Birand, Mehmet Tuncay; Department of Electrical and Electronics Engineering (2005)
The Multimode Interference (MMI) mechanism is a powerful toool used in the analysis and design of a certain class of optical, microwave and millimeter wave devices. The principles of the MMI method and the self-imaging principle is described. Using this method, NXM MMI couplers, MMI splitter/combiners are analyzed. Computer simulations for illustrating the "Multimode Interference Mechanism" are carried out. The MMI approach is used to analyze overmoded 'rectangular metallic' and 'dielectric slab' type of wa...
Magnetic resonance current density imaging using one component of magnetic flux density
Ersöz, Ali; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2010)
Magnetic Resonance Electrical Impedance Tomography (MREIT) algorithms using current density distribution have been proposed in the literature. The current density distribution can be determined by using Magnetic Resonance Current Density Imaging (MRCDI) technique. In MRCDI technique, all three components of magnetic flux density should be measured. Hence, object should be rotated inside the magnet which is not trivial even for small size objects and remains as a strong limitation to clinical applicability o...
Design and fabrication of rf mems switches and instrumentation for performance evaluation
Atasoy, Halil İbrahim; Demir, Şimşek; Department of Electrical and Electronics Engineering (2007)
This thesis presents the RF and mechanical design of a metal-to-metal contact RF MEMS switch. Metal-to-metal contact RF MEMS switches are especially preferred in low frequency bands where capacitive switches suffer from isolation due to the limited reactance. Frequency band of operation of the designed switch is from DC to beyond X-band. Measured insertion loss of the structure is less than 0.2 dB, return loss is better than 30 dB, and isolation is better than 20 dB up to 20 GHz. Isolation is greater than 2...
Citation Formats
G. Afacan, “The electrical characteristics of antennas in their operational environment,” M.S. - Master of Science, Middle East Technical University, 2007.