Lepton flavor violating radion decays in the Randall-Sundrum Scenario

Download
2007
Korutlu, Beste
The lepton flavor violating interactions are worthwhile to examine since they are sensitive to physics beyond the Standard Model. The simplest extension of the Standard Model promoting the lepton flavor violating interactions are the so called two Higgs doublet model which contains an additional Higgs doublet carrying the same quantum numbers as the first one. In this model, the lepton flavor violating interactions are induced by new scalar Higgs bosons, scalar h^0 and pseudo scalar A^0, and Yukawa couplings, appearing as free parameters, are determined by using the experimental data. On the other hand, the possible extra dimensions are interesting in the sense that they ensure a solution to the hierarchy and cosmological constant problems and also result in the enhancement in the physical quantities of various processes. In the present work, we predict the branching ratios of lepton flavor violating radion decays r->e^+- mu^-+, r->e^+- tau^-+ and r->mu^+- tau^-+ in the two Higgs doublet model, including a single extra dimension, in the framework of the Randall Sundrum scenario. We observed that the branching ratios of the processes we study are at most at the order of 10^-8 for the small values of radion mass and it decreases with the increasing values of the radion mass. Among the LFV decays we study, the r->mu^+- tau^-+ decay would be the most suitable one to measure its branching ratio.

Suggestions

Lepton flavor violation in the two higgs doublet model
Sundu, Hayriye; İltan, Erhan Onur; Department of Physics (2007)
The lepton flavor violating interactions are interesting in the sense that they are sensitive the physics beyond the standard model and they ensure considerable information about the restrictions of the free parameters, with the help of the possible accurate measurements. In this work, we investigate the lepton flavor violating H+ ! W+l and the lepton flavor conserving H+ ! W+l decays in the general two Higgs doublet model and we estimate decay widths of these decays. After that, we analyze lepton flavor vi...
Lepton flavor violating radion decays in the Randall-Sundrum scenario
Iltan, E. O.; Korutlu, B. (IOP Publishing, 2008-06-01)
We predict the branching ratios of the lepton flavor violating radion decays r --> e(+/-)mu(+/-), r --> e(+/-)tau(+/-) and r --> mu(+/-)tau(+/-) in the two Higgs doublet model, in the framework of the Randall-Sundrum scenario. We observe that their branching ratios are at most of the order of 10(-8), for small values of radion mass and they decrease with increasing values of mr. Among these processes, the r --> tau(+/-)mu(+/-) decay would be the most suitable one to measure its branching ratio.
İnvestigating the semileptonic B to K1(1270,1400) decays in QCD sum rules
Dağ, Hüseyin; Zeyrek, Mehmet Tevfik; Department of Physics (2010)
Quantum Chromodynamics(QCD) is part of the Standard Model(SM) that describes the interaction of fundamental particles. In QCD, due to the fact that strong coupling constant is large at low energies, perturbative approaches do not work. For this reason, non-perturbative approaches have to be used for studying the properties of hadrons. Among several non-perturbative approaches, QCD sum rules is one of the reliable methods which is applied to understand the properties of hadrons and their interactions.\ In th...
Dynamic ion behavior in plasma source ion implantation
Bozkurt, Bilge; Bilikmen, Kadri Sinan; Department of Physics (2006)
The aim of this work is to analytically treat the dynamic ion behavior during the evolution of the ion matrix sheath, considering the industrial application plasma source ion implantation for both planar and cylindrical targets, and then to de-velop a code that simulates this dynamic ion behavior numerically. If the sepa-ration between the electrodes in a discharge tube is small, upon the application of a large potential between the electrodes, an ion matrix sheath is formed, which fills the whole inter-ele...
Graviton induced monojet production in cms within add type led
Surat, Uğur Emrah; Serin, Meltem; Department of Physics (2010)
The discovery reach for the ADD-type Large Extra Dimension (LED) scenario in the CMS Experiment at the LHC is presented by looking at the Monojet + Missing Energy signature, which arises as a result of a single graviton emission accompanied by a quark or gluon. Using Monte Carlo generated events, two LHC run scenarios were considered and compared namely a center-of-mass energy of 14 TeV and integrated luminosity of 100 pb−1, and a center-of-mass energy of 10 TeV and integrated luminosity of 200 pb−1. Detail...
Citation Formats
B. Korutlu, “Lepton flavor violating radion decays in the Randall-Sundrum Scenario,” M.S. - Master of Science, Middle East Technical University, 2007.