Investigations on the biodegradable polymeric and inorganic substrates for controlled drug delivery and bone and cartilage repair

Download
2008
Günay, Aycan
Tissue engineering is an interdisciplinary field that seeks to address the needs by applying the principles of chemistry, biology and engineering for the development of viable substitutes that restore and maintain the function of human bone and cartilage tissues. In tissue engineering, scaffolds play an important role as temporary supports for the transplantation of specific cells and tissues. In this study, poly(ester-urethane)urea (PEUU) and poly(caprolactone) (PCL) scaffolds were fabricated. Scaffolds were characterized by SEM. Porosities of scaffolds vary from 67 % to 80 %. Controlled drug delivery systems release drugs at predetermined rates for extended periods. In this study; firstly poly(lactic-co-glycolicolide/tricalcium phosphate) (PLGA/TCP) and poly(L-lactide)/tricalcium phosphate (PLLA/TCP) composites loaded with Gentamicin or Vancomycin were prepared as controlled drug delivery systems for the local treatment of osteomyelitis. The release behavior of drugs were monitored by UV-VIS spectrometer. It was shown that, Vancomycin loaded samples released higher amounts of drug than the samples loaded with Gentamicin. Secondly, porous ceramic samples were coated with PLGA and PLLA and they were loaded with dexamethasone. The release behavior of samples were monitored by UV-VIS spectrometer.The cubic ceramics released higher amounts of dexamethasone than cylindrical ceramics. When the mechanical properties of porous ceramic samples were concerned, PLLA coated samples had better mechanical properties.

Suggestions

Development and analysis of controlled release polymeric rods containing vancomycin
Tağıt, Oya; Hasırcı, Vasıf Nejat; Department of Biotechnology (2005)
Antibiotic use is a vital method for the treatment of most diseases involving bacterial infections. Unfortunately, in certain cases these agents are not effective in treatments against diseases for either some limitation in antibiotic usage because of the side effects or some distribution problems caused by physiological or pathological barriers in the body. Such problems are thought to be minimized by development of controlled release systems which involve implantation of antibiotic loaded polymeric system...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Preparation and characterization of acrylic bone cements
Endoğan, Tuğba; Hasırcı, Nesrin; Department of Chemistry (2005)
Acrylic bone cements are used in dentistry and orthopedic surgery to fix prosthetic devices into the bone. Bone cements transfer and distribute the applied load and increase the load-carrying capacity of the prosthesis/cement/bone system with the help of mechanical bonding between the device and the bone. In spite of all their advantages, bone cements have several drawbacks such as insufficient mechanical properties, high exothermic polymerization temperature, release of monomer to the environmental tissue ...
Investigations on the properties and drug releases of biodegradable polymer coatings on metal substrates as drug carriers
Baydemir, Tuncay; Bayramlı, Erdal; Department of Polymer Science and Technology (2009)
The use of various biodegradable polymers for the improvement of different controlled and long-lasting drug release systems is an active research area in recent years. The application of different metal prostheses, especially titanium based ones, to the human body is also very common. A most important disadvantage of these prostheses is the risk of infection at the application areas that necessitates the removing of the prosthesis with a second surgical operation and reapplication of it after recovery. One ...
Preparation and characterization of chitosanpolyethylene glycol microspheres and films for biomedical applications
Günbaş, İsmail Doğan; Hasırcı, Nesrin; Department of Polymer Science and Technology (2007)
In recent years, biodegradable polymeric systems have gained importance for design of surgical devices, artificial organs, drug delivery systems with different routes of administration, carriers of immobilized enzymes and cells, biosensors, ocular inserts, and materials for orthopedic applications. Polysaccharide-based polymers represent a major class of biomaterials, which includes agarose, alginate, dextran, and chitosan. Chitosan has found many biomedical applications, including tissue engineering, owing...
Citation Formats
A. Günay, “Investigations on the biodegradable polymeric and inorganic substrates for controlled drug delivery and bone and cartilage repair,” M.S. - Master of Science, Middle East Technical University, 2008.