Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biosensor based on interpenetrated polymer network of alginic acid and poly(1-vinylimidazole )
Download
index.pdf
Date
2008
Author
Kartal, Müjgan
Metadata
Show full item record
Item Usage Stats
312
views
99
downloads
Cite This
A new proton conductor polymer was prepared using alginic acid (AA) and poly (1-vinylimidazole) (PVI). The polymer network was obtained by mixing AA and PVI at various stoichiometric ratios, x (molar ratio of the monomer repeat units). The AA/PVI network was characterized by elemental analysis (EA) and FT-IR spectroscopy. Potential use of this network in enzyme immobilization was studied. Enzyme entrapped polymer networks (EEPN) were produced by immobilizing invertase and tyrosinase (PPO) in the AA/PVI network. Additionally, the maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were investigated for the immobilized invertase and enzymes. Also, temperature and pH optimization, operational stability and shelf life of the polymer network were examined.
Subject Keywords
Polymers.
,
Macromolecules.
URI
http://etd.lib.metu.edu.tr/upload/12609286/index.pdf
https://hdl.handle.net/11511/17530
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Syntheses of benzotriazole bearing donor acceptor type random copolymers for full visible light absorption
Öktem, Gözde; Toppare, Levent Kamil; Department of Chemistry (2011)
The synthesis and preliminary optoelectronic properties of a series of donor-acceptor (DA) type polymers differing by the acceptor units in the polymer backbone were investigated. Polymers CoP1, CoP2 and CoP3 were designed to yield alternating DA segments with randomly distributed different acceptor units along polymer backbone. The combination of neutral state red colored and neutral state green colored materials resulted in different neutral state colors with respect to their additional acceptor unit. 5,8...
Covalent immobilization of glucose isomerase on poly(2-hydoxyethyl methacrylate) particles
Yıldız, Ümit Hakan; Hasırcı, Nesrin; Department of Chemistry (2004)
In this study, poly (2-hydroxyethyl methacrylate), P(HEMA), particles were prepared by suspension polymerization of the monomer 2-hydroxyethyl methacrylate with addition of ethylene glycol dimethyacrylate, EGDMA, as cross linker. Glucose isomerase, GI, enzyme was covalently immobilized on the prepared P(HEMA) particles after activation of the particles with cyanuric chloride. The activities of the free and immobilized enzymes were measured with Ethanol-Carbazole method. The immobilization of GI on P(HEMA) p...
Immobiliation of glucose oxidase and polyphenol oxidase in conducting copolymer of pyrrole functionalized polystyrene with pyrrole
Ekinci, Olçun; Toppare, Levent Kamil; Department of Chemistry (2006)
Electrochemical polymerization of pyrrole functionalized polystyrene (PStPy) with pyrrole was carried out in water-sodium dodecyl sulfate solvent-electrolyte couple. Characterization of the resulting copolymer was performed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and four probe conductivity measurements. Glucose oxidase and polyphenol oxidase enzymes were immobilized in polypyrrole (PPy) and conducting copolymer of pyrrole functionalized polystyrene with pyrrol...
Synthesis, characterization and electrochromic properties of conducting copolymers of terephthalic acid bis-(thiophen-3-ylmethyl)thioester with thiophene and pyrrole and conducting polymer of 1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1h-pyrrole
Türkarslan, Özlem; Toppare, Levent Kamil; Department of Chemistry (2006)
Terephthalic acid bis-(thiophen-3-ylmethyl)thioester (TTMT) was synthesized via the reaction of thiophen-3-ylmethanethiol with terephthaloyl dichloride. Nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FTIR) spectroscopies were utilized for the characterization of the monomer. This 3-functionalized thiophene monomer was polymerized in the presence of thiophene (Th) and pyrrole (Py) upon constant potential application in acetonitrile/tetrabutylammonium tetrafluoroborate (TBAFB). The result...
Spray processable ambipolar benzotriazole bearing electrochromic polymers with multi-colored and transmissive states
Hızalan, Gönül; Toppare, Levent Kamil; Department of Chemistry (2011)
The interest towards organic semi-conductors increased due to their tunable band gaps, redox properties, processability and low cost in the field of conducting polymers. Electrochromic materials have the ability to change color by altering their redox state. In the context of low cost flexible display device technology, requirements can be fulfilled with accessible multi-colored electrochromic polymers. In this study, we report the chemical synthesis and electrochromic properties of two spray processable, a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kartal, “Biosensor based on interpenetrated polymer network of alginic acid and poly(1-vinylimidazole ),” M.S. - Master of Science, Middle East Technical University, 2008.