Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrospinning of polystyrene/butly rubber blends : a parametric study
Download
index.pdf
Date
2008
Author
Göktaş, Ahmet
Metadata
Show full item record
Item Usage Stats
304
views
250
downloads
Cite This
Nanofibers, which have high surface area to volume ratio and better mechanical properties, are nanomaterials that both industry and scientists have started to show great attention in the last two decades. They are used in many areas such as life and filtration sciences, sensors, and composite reinforcement etc. Among five main production types, electrospinning is the best candidate for further development with a wide range of opportunities to be applied to all types of polymers and ceramics. This method uses electrically charged jet of polymers or liquid states of polymers to produce fibers from micro dimensions down to nano dimensions. Electrospinning setup has mainly three parts; (i) an AC/DC high voltage equipment which creates high electrical potential, (ii) a syringe, and (iii) a collecting screen. The purpose of this study is to electrospin polystyrene/butyl rubber blends and to investigate the effects of electrospinning parameters on the fibers produced. In this study, polystyrene/butyl rubber blends were electrospun by changing the applied voltage, the tip-to-collector distance, the flowrate, and the butyl rubber content in the fiber. Finally, morphology of electrospun fibers was characterized by SEM. The average fiber diameters varied from 760 nm to nearly 10 m. Increasing butyl rubber content in the fiber resulted in a decrease in the final fiber diameter. Increasing applied voltage also caused a decrease in the final fiber diameter. The tip-to-collector distance did not affect the average fiber diameter. Increasing flowrate yielded fibers with larger diameters. Finally, the addition of non-ionic surfactant decreased the average fiber diameter.
Subject Keywords
Chemical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12609361/index.pdf
https://hdl.handle.net/11511/17567
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental investagation of drag reduction effects of polymer additives on turbulent pipe flow
Zeybek, Şerife; Uludağ, Yusuf; Department of Chemical Engineering (2005)
Since the discovery of the drag reduction effects of even small amount of macromolecules in solutions in turbulent pipe flows, there have been many experimental and theoretical studies in order to understand mechanisms behind this phenomenon. Theories have been proposed based on the observations on the change in the characteristics of the turbulent flow near the pipe wall where friction of the momentum transfer between the flow and the conduit takes place. In this study drag reduction in fully developed tur...
Anodization of titanium alloys for orthopedic applications
Izmir, Merve; Ercan, Batur (Springer Science and Business Media LLC, 2019-03-01)
In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been w...
Self reinforcement of poly(ethylene terephthalate) and polyyethyklene blends
Kurtuluş, Ceren; Bayram, Göknur; Department of Chemical Engineering (2007)
In this study, 20/80 (weight %) Poly(ethylene terephthalate) (PET) /High Density Polyethylene (HDPE) Microfibrillar Reinforced Composites (MFC) were prepared by using high density polyethylene (HDPE) as the matrix material, poly(ethylene terephthalate) (PET) as the reinforcing component. Ethylene n-butyl acrylate-glycidyl methacrylate (E-nBA-GMA) and ethylene methyl acrylate (E-MA) as the compatibilizers in 1, 5, and 10 wt. %. The objective of this study is to produce MFCs based on PET and HDPE via extrusio...
Catalytic partial oxidation of propylene on metal surfaces by means of quantum chemical methods
Kızılkaya, Ali Can; Önal, Işık; Department of Chemical Engineering (2010)
Direct, gas phase propylene epoxidation reactions are carried out on model slabs representing Ru-Cu(111) bimetallic and Cu(111) metallic catalyst surfaces with periodic Density Functional Theory (DFT) calculations. Ru-Cu(111) surface is modelled as a Cu(111) monolayer totally covering the surface of Ru(0001) surface underneath. The catalytic activity is evaluated following the generally accepted oxametallacycle mechanism. It is shown that the Ru-Cu(111) surface has a lower energy barrier (0.48 eV) for the s...
Comparison of Fenitrothion and Trifluralin Adsorption on Organo-Zeolites and Activated Carbon. Part II: Thermodynamic Parameters and the Suitability of the Kinetic Models of Pesticide Adsorption
LÜLE ŞENÖZ, Güzide Meltem; Atalay, Mustafa Ümit (Informa UK Limited, 2014-07-04)
The suitability of two kinetic models and the thermodynamic parameters of pesticide adsorption were investigated based on obtained data of previous studies. Kinetic evaluation indicated that the pesticides adsorption on adsorbents followed the pseudo-second-order model. Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (Delta S degrees) were calculated for thermodynamic parameters by using linearized Arrhenius equation. The results indicated that the sorption process of fenitrothi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Göktaş, “Electrospinning of polystyrene/butly rubber blends : a parametric study,” M.S. - Master of Science, Middle East Technical University, 2008.